論文の概要: Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering
- arxiv url: http://arxiv.org/abs/2410.22983v1
- Date: Wed, 30 Oct 2024 12:50:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:01.635974
- Title: Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering
- Title(参考訳): 多視点グラフクラスタリングのためのデュアル最適化適応グラフ再構成
- Authors: Zichen Wen, Tianyi Wu, Yazhou Ren, Yawen Ling, Chenhang Cui, Xiaorong Pu, Lifang He,
- Abstract要約: 本稿では, DOAGC という2つの最適化された適応グラフ再構成に基づく新しいマルチビューグラフクラスタリング手法を提案する。
主に、従来のGNNの利点を維持しつつ、異種グラフ問題に対処するために、従来のGNNに適合したグラフ構造を再構築することを目的としている。
- 参考スコア(独自算出の注目度): 19.419832637206138
- License:
- Abstract: Multi-view clustering is an important machine learning task for multi-media data, encompassing various domains such as images, videos, and texts. Moreover, with the growing abundance of graph data, the significance of multi-view graph clustering (MVGC) has become evident. Most existing methods focus on graph neural networks (GNNs) to extract information from both graph structure and feature data to learn distinguishable node representations. However, traditional GNNs are designed with the assumption of homophilous graphs, making them unsuitable for widely prevalent heterophilous graphs. Several techniques have been introduced to enhance GNNs for heterophilous graphs. While these methods partially mitigate the heterophilous graph issue, they often neglect the advantages of traditional GNNs, such as their simplicity, interpretability, and efficiency. In this paper, we propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC. It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs. Specifically, we first develop an adaptive graph reconstruction mechanism that accounts for node correlation and original structural information. To further optimize the reconstruction graph, we design a dual optimization strategy and demonstrate the feasibility of our optimization strategy through mutual information theory. Numerous experiments demonstrate that DOAGC effectively mitigates the heterophilous graph problem.
- Abstract(参考訳): マルチビュークラスタリングはマルチメディアデータにとって重要な機械学習タスクであり、画像、ビデオ、テキストなど様々な領域を含んでいる。
さらに,グラフデータの豊富化に伴い,マルチビューグラフクラスタリング(MVGC)の重要性が明らかになってきた。
既存のほとんどの手法は、グラフ構造と特徴データの両方から情報を抽出し、識別可能なノード表現を学習するグラフニューラルネットワーク(GNN)に焦点を当てている。
しかし、従来のGNNはホモフィルグラフを仮定して設計されており、広く普及しているヘテロフィルグラフには適さない。
異種グラフのためのGNNを強化するために、いくつかの技術が導入されている。
これらの手法は異種グラフ問題を部分的に緩和するが、単純さ、解釈可能性、効率性といった従来のGNNの利点を無視することが多い。
本稿では,デュアル最適化適応グラフ再構成に基づく新しいマルチビューグラフクラスタリング手法であるDOAGCを提案する。
主に、従来のGNNの利点を維持しつつ、異種グラフ問題に対処するために、従来のGNNに適合したグラフ構造を再構築することを目的としている。
具体的には、まず、ノード相関と元の構造情報を考慮に入れた適応グラフ再構成機構を開発する。
再構成グラフをさらに最適化するため,双対最適化戦略を設計し,相互情報理論による最適化戦略の実現可能性を示す。
多くの実験により、DOAGCはヘテロ親和性グラフ問題を効果的に緩和することを示した。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
カーネルグラフニューラルネットワーク(KGNN)の設計と学習の改善
我々はLGA(Latent graph augmentation)と呼ばれる新しい構造保存グラフデータ拡張法を開発した。
提案モデルは,最先端のグラフ表現学習フレームワークに匹敵する,あるいは時として優れる性能を実現する。
論文 参考訳(メタデータ) (2023-10-17T14:04:22Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
論文 参考訳(メタデータ) (2023-09-24T10:10:21Z) - Edge Directionality Improves Learning on Heterophilic Graphs [42.5099159786891]
我々は、有向グラフを深層学習するための新しいフレームワークであるDir-GNN(Directed Graph Neural Network)を紹介する。
Dir-GNNは、任意のメッセージパッシングニューラルネットワーク(MPNN)を拡張して、エッジ指向性情報を考慮するために使用することができる。
我々は,Dir-GNNが従来のMPNNよりも高い指向性Weisfeiler-Lehmanテストの表現性に一致することを証明した。
論文 参考訳(メタデータ) (2023-05-17T18:06:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach [43.41163711340362]
本稿では, ヘテロフィリーグラフリワイアリング(Deep Heterophily Graph Rewiring, DHGR)という手法を提案する。
我々の知る限りでは、ヘテロフィリーグラフに対するグラフ再構成を研究する最初の研究である。
論文 参考訳(メタデータ) (2022-09-17T06:55:21Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Directed Graph Convolutional Network [15.879411956536885]
スペクトルベースのグラフ畳み込みを1階と2階の近接を利用して有向グラフに拡張する。
DGCNと呼ばれる新しいGCNモデルは、有向グラフ上で表現を学ぶように設計されている。
論文 参考訳(メタデータ) (2020-04-29T06:19:10Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。