Generalized many-body perturbation theory for the electron correlation energy: multi-reference random phase approximation via diagrammatic resummation
- URL: http://arxiv.org/abs/2410.22990v2
- Date: Wed, 19 Mar 2025 01:37:13 GMT
- Title: Generalized many-body perturbation theory for the electron correlation energy: multi-reference random phase approximation via diagrammatic resummation
- Authors: Yuqi Wang, Wei-Hai Fang, Zhendong Li,
- Abstract summary: Many-body perturbation theory (MBPT) based on Green's functions and Feynman diagrams provides a fundamental theoretical framework for emphab initio computational approaches.<n>However, perturbation expansion often fails in systems with strong multi-reference characters.<n>We develop a diagrammatic multi-reference of MBPT for computing correlation energies of strongly correlated systems.
- Score: 6.34014022599321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many-body perturbation theory (MBPT) based on Green's functions and Feynman diagrams provides a fundamental theoretical framework for various \emph{ab initio} computational approaches in molecular and materials science, including the random phase approximation (RPA) and $GW$ approximation. Unfortunately, this perturbation expansion often fails in systems with strong multi-reference characters. Extending diagrammatic MBPT to the multi-reference case is highly nontrivial and remains largely unexplored, primarily due to the breakdown of Wick's theorem. In this work, we develop a diagrammatic multi-reference generalization of MBPT for computing correlation energies of strongly correlated systems, by using the cumulant expansion of many-body Green's function in place of Wick's theorem. This theoretical framework bridges the gap between MBPT in condensed matter physics and multi-reference perturbation theories (MRPT) in quantum chemistry, which had been almost exclusively formulated within time-independent wavefunction frameworks prior to this work. Our formulation enables the explicit incorporation of strong correlation effects from the outset as in MRPT, while treating residual weak interactions through a generalized diagrammatic perturbation expansion as in MBPT. As a concrete demonstration, we formulate a multi-reference (MR) extension of the standard single-reference (SR) RPA by systematically resumming generalized ring diagrams, which naturally leads to a unified set of equations applicable to both SR and MR cases. Benchmark calculations on prototypical molecular systems reveal that MR-RPA successfully resolves the well-known failure of SR-RPA in strongly correlated systems. This theoretical advancement paves the way for advancing \emph{ab initio} computational methods through diagrammatic resummation techniques in future.
Related papers
- Time-Reversal Symmetry in RDMFT and pCCD with Complex-Valued Orbitals [0.0]
We show that complex solutions lower the energy when non-dynamic electronic correlation effects are pronounced.
Specifically, we find that complex solutions lower the energy when non-dynamic electronic correlation effects are pronounced.
We present numerical examples to illustrate and discuss these instabilities and possible problems introduced by N-representability violations.
arXiv Detail & Related papers (2024-10-04T17:22:03Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Generalized Free Cumulants for Quantum Chaotic Systems [0.0]
The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in isolated quantum systems.
We show that the ETH is a sufficient mechanism for thermalization, in general.
In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times.
arXiv Detail & Related papers (2024-01-24T22:04:41Z) - Applications of flow models to the generation of correlated lattice QCD ensembles [69.18453821764075]
Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters.
This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables.
arXiv Detail & Related papers (2024-01-19T18:33:52Z) - Coupled cluster theory based on quantum electrodynamics: Physical
aspects of closed shell and multi-reference open shell methods [0.0]
This work has three novelties: (i) QED interactions are obtained from a single procedure based on the radiative cluster; (ii) pair energy is determined from an extended matter cluster formalism; and (iii) additional correlation energy can be had from radiative effects and pair terms.
arXiv Detail & Related papers (2024-01-12T06:08:09Z) - Strong-Field Molecular Ionization Beyond The Single Active Electron
Approximation [0.0]
We study signals of the single ionization of $H$ under a strong near-infrared (NIR) four-cycle, linearly-polarized laser pulse of varying intensity.
We give an interpretation of this in terms of a Resonance-Enhanced-Multiphoton Ionization (REMPI) mechanism with interfering resonances resulting from excited electronic states.
arXiv Detail & Related papers (2022-09-15T09:49:14Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - Reduced Density Matrix Functional Theory for Bosons: Foundations and
Applications [0.0]
This thesis aims to initiate and establish a bosonic RDMFT for both ground state and excited state energy calculations.
Motivated by the Onsager and Penrose criterion, we derive the universal functional for a homogeneous Bose-Einstein condensates (BECs) in the Bogoliubov regime.
In the second part of the thesis, we propose and work out an ensemble RDMFT targeting excitations in bosonic quantum systems.
arXiv Detail & Related papers (2022-05-05T13:28:18Z) - Algebraic-Dynamical Theory for Quantum Many-body Hamiltonians: A
Formalized Approach To Strongly Interacting Systems [0.0]
Dynamical perturbation methods are the most widely used approaches for quantum many-body systems.
We formulate an algebraic-dynamical theory (ADT) by combining the power of quantum algebras and dynamical methods.
Applying ADT to many-body systems on lattices, we find that the quantum entanglement is represented by the cumulant structure of expectation values of the many-body COBS.
arXiv Detail & Related papers (2022-02-24T13:07:30Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Symmetry-adapted perturbation theory based on multiconfigurational wave
function description of monomers [0.0]
We present a formulation of the multiconfigurational (MC) wave function symmetry theory (SAPT)
The method is applicable to noncovalent interactions between monomers in an electronically excited state.
We demonstrate that the negative-transition terms must be accounted for to ensure qualitative prediction of induction and dispersion energies.
arXiv Detail & Related papers (2021-04-14T14:33:42Z) - Resolving Correlated States of Benzyne on a Quantum Computer with an
Error-Mitigated Quantum Contracted Eigenvalue Solver [0.0]
We show that a contraction of the Schr"odinger equation is solved for the two-electron reduced density matrix (2-RDM)
In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr"odinger equation onto the two-electron space.
arXiv Detail & Related papers (2021-03-11T18:58:43Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - An analytical theory of CEP-dependent coherence driven by few-cycle
pulses [28.971848801529205]
We present an analytical theory that describes a two-level atom driven by a far-off-resonance, few-cycle square pulse.
Despite its mathematical simplicity, the relation is able to capture some of the key features of the interaction.
The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum coherence.
arXiv Detail & Related papers (2021-01-13T05:16:12Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Time-Dependent Self Consistent Harmonic Approximation: Anharmonic
nuclear quantum dynamics and time correlation functions [0.0]
We derive an approximate theory for the quantum time evolution of lattice vibrations at finite temperature.
We apply perturbation theory around the static SCHA solution and derive an algorithm to compute efficiently quantum dynamical response functions.
arXiv Detail & Related papers (2020-11-30T16:56:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
We exploit the representation power of RBMs to provide an exact decomposition of many-body contact interactions into one-body operators.
This construction generalizes the well known Hirsch's transform used for the Hubbard model to more complicated theories such as Pionless EFT in nuclear physics.
arXiv Detail & Related papers (2020-05-07T15:59:29Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.