Hybrid model of the kernel method for quantum computers
- URL: http://arxiv.org/abs/2410.23315v1
- Date: Tue, 29 Oct 2024 16:49:03 GMT
- Title: Hybrid model of the kernel method for quantum computers
- Authors: Jhordan Silveira de Borba, Jonas Maziero,
- Abstract summary: We propose a hybrid learning method based on classic kernel methods and a quantum algorithm for the calculation of internal products between vectors of continuous values.
As a test case, we applied this new algorithm to learn to classify whether new points generated randomly, in a finite square located under a plane, were found inside or outside a circle located inside this square.
It was found that the algorithm was able to correctly detect new points in 99% of the samples tested, with a small difference due to considering the radius slightly larger than the ideal.
- Score: 0.0
- License:
- Abstract: The field of quantum machine learning is a promising way to lead to a revolution in intelligent data processing methods. In this way, a hybrid learning method based on classic kernel methods is proposed. This proposal also requires the development of a quantum algorithm for the calculation of internal products between vectors of continuous values. In order for this to be possible, it was necessary to make adaptations to the classic kernel method, since it is necessary to consider the limitations imposed by the Hilbert space of the quantum processor. As a test case, we applied this new algorithm to learn to classify whether new points generated randomly, in a finite square located under a plane, were found inside or outside a circle located inside this square. It was found that the algorithm was able to correctly detect new points in 99% of the samples tested, with a small difference due to considering the radius slightly larger than the ideal. However, the kernel method was able to perform classifications correctly, as well as the internal product algorithm successfully performed the internal product calculations using quantum resources. Thus, the present work represents a contribution to the area, proposing a new model of machine learning accessible to both physicists and computer scientists.
Related papers
- Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms [0.0]
We introduce kernel descent, a novel algorithm for minimizing the functions underlying variational quantum algorithms.
In particular, we showcase scenarios in which kernel descent outperforms gradient descent and quantum analytic descent.
Kernel descent sets itself apart with its employment of reproducing kernel Hilbert space techniques in the construction of the local approximations.
arXiv Detail & Related papers (2024-09-16T13:10:26Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
arXiv Detail & Related papers (2024-05-02T23:45:29Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Towards Efficient Quantum Anomaly Detection: One-Class SVMs using
Variable Subsampling and Randomized Measurements [4.180897432770239]
Quantum computing allows significant advancements in kernel calculation and model precision.
We present two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method.
Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively.
Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel.
arXiv Detail & Related papers (2023-12-14T17:42:18Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Kernel quadrature with randomly pivoted Cholesky [0.0]
This paper presents new quadrature rules for functions in a reproducing kernel Hilbert space using nodes drawn by a sampling algorithm known as randomly pivoted Cholesky.
Results show that randomly pivoted Cholesky is fast and achieves comparable quadrature error rates to more computationally expensive quadrature schemes.
arXiv Detail & Related papers (2023-06-06T18:33:40Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
We disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning.
We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly.
The connection to Gaussian processes enables new function-space inference algorithms.
arXiv Detail & Related papers (2020-07-21T17:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.