論文の概要: Deep learning meets tree phenology modeling: PhenoFormer vs. process-based models
- arxiv url: http://arxiv.org/abs/2410.23327v1
- Date: Wed, 30 Oct 2024 15:40:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:19.189682
- Title: Deep learning meets tree phenology modeling: PhenoFormer vs. process-based models
- Title(参考訳): 深層学習と樹木表現学モデリング--PhenoFormer vs. プロセスベースモデル
- Authors: Vivien Sainte Fare Garnot, Lynsay Spafford, Jelle Lever, Christian Sigg, Barbara Pietragalla, Yann Vitasse, Arthur Gessler, Jan Dirk Wegner,
- Abstract要約: PhenoFormerは、気候データ分布の変化の下で表現学を予測するのに、従来の統計手法よりも適したニューラルネットワークである。
スイスの9種の木質植物から得られた70年間の70万の現象学観測データから,PhenoFormerが従来の機械学習手法より優れていることを示す数値実験を行った。
- 参考スコア(独自算出の注目度): 3.864610688022995
- License:
- Abstract: Phenology, the timing of cyclical plant life events such as leaf emergence and coloration, is crucial in the bio-climatic system. Climate change drives shifts in these phenological events, impacting ecosystems and the climate itself. Accurate phenology models are essential to predict the occurrence of these phases under changing climatic conditions. Existing methods include hypothesis-driven process models and data-driven statistical approaches. Process models account for dormancy stages and various phenology drivers, while statistical models typically rely on linear or traditional machine learning techniques. Research shows that process models often outperform statistical methods when predicting under climate conditions outside historical ranges, especially with climate change scenarios. However, deep learning approaches remain underexplored in climate phenology modeling. We introduce PhenoFormer, a neural architecture better suited than traditional statistical methods at predicting phenology under shift in climate data distribution, while also bringing significant improvements or performing on par to the best performing process-based models. Our numerical experiments on a 70-year dataset of 70,000 phenological observations from 9 woody species in Switzerland show that PhenoFormer outperforms traditional machine learning methods by an average of 13% R2 and 1.1 days RMSE for spring phenology, and 11% R2 and 0.7 days RMSE for autumn phenology, while matching or exceeding the best process-based models. Our results demonstrate that deep learning has the potential to be a valuable methodological tool for accurate climate-phenology prediction, and our PhenoFormer is a first promising step in improving phenological predictions before a complete understanding of the underlying physiological mechanisms is available.
- Abstract(参考訳): 葉の出現や着色といった循環植物活動のタイミングである現象は,生物気候システムにおいて重要である。
気候変動はこれらの現象の変化を加速させ、生態系や気候そのものに影響を及ぼす。
正確な表現学モデルは、気候条件の変化の下でこれらの相の発生を予測するのに不可欠である。
既存の手法には仮説駆動型プロセスモデルとデータ駆動型統計手法がある。
プロセスモデルは休眠期と様々な現象学のドライバを考慮し、統計モデルは典型的には線形または伝統的な機械学習技術に依存する。
研究によると、プロセスモデルは、特に気候変動のシナリオにおいて、歴史的範囲外の気候条件下での予測において、統計学的手法よりも優れていることがしばしば示されている。
しかし、深層学習のアプローチは、気候現象学モデリングでは未熟である。
PhenoFormerは、気候データ分布の変化の下での表現学を予測するのに、従来の統計手法よりも適したニューラルネットワークである。
スイスの9種の木質樹種から70,000の表現学的観測データを用いて,春の表現学では平均13% R2と1.1日 RMSE,秋の表現学では11% R2と0.7日 RMSEが,秋の表現学ではPhenoFormerは平均13% R2と1.1日,秋の表現学では11% R2と0。
我々のPhenoFormerは、基礎となる生理的メカニズムが完全に理解される前に、表現学的予測を改善するための第1のステップである。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Robustness of AI-based weather forecasts in a changing climate [1.4779266690741741]
現状の機械学習モデルは、現在の気候における天気予報のために訓練されたものであり、様々な気候状態において熟練した予測をもたらすことを示す。
現在の制限にもかかわらず、我々の結果は、データ駆動機械学習モデルが気候科学に強力なツールを提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-27T08:11:49Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - A Deconfounding Approach to Climate Model Bias Correction [26.68810227550602]
地球温暖化モデル(GCM)は、地球系をシミュレートすることで、将来の気候変動を予測するのに不可欠である。
GCMは、モデルの不確実性、パラメータ化の単純化、複雑な気候現象の不十分な表現による体系的なバイアスを示す。
本稿では,GCMと観測データの両方を用いて,多原因共同創設者を捉える因子モデルを学習するための新しいバイアス補正手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T01:53:35Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Emerging Statistical Machine Learning Techniques for Extreme Temperature
Forecasting in U.S. Cities [0.0]
本稿では,新しい統計機械学習技術を用いた極端温度パターンの包括的解析を行う。
これらの手法を、最も人口の多い5つの米国都市の気候時系列データに適用する。
本研究は, 統計的手法の違いを強調し, 最も効果的なアプローチとして多層パーセプトロンを同定した。
論文 参考訳(メタデータ) (2023-07-26T16:38:32Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
我々は,北米のUniform Soybean Tests (UST) から13年間のデータにまたがる過去のパフォーマンス記録を用いて,複数環境でジェノタイプ応答を検出・予測するために,Long Short Term Memory - Recurrent Neural Network based modelを構築した。
我々は、このディープラーニングフレームワークを「仮説生成ツール」としてデプロイし、GxExM関係を解き放つ。
異なる気候条件下でのダイズおよび他の作物に対するこのアプローチの適用性(感度分析および「What-if」シナリオ)について検討した。
論文 参考訳(メタデータ) (2020-06-24T16:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。