Linear and non-linear relational analyses for Quantum Program Optimization
- URL: http://arxiv.org/abs/2410.23493v1
- Date: Wed, 30 Oct 2024 22:57:07 GMT
- Title: Linear and non-linear relational analyses for Quantum Program Optimization
- Authors: Matthew Amy, Joseph Lunderville,
- Abstract summary: We show that the phase folding optimization can be re-cast as an emphaffine relation analysis
We show that the emphsum-over-paths technique can be used to extract precise symbolic transition relations for straightline circuits.
- Score: 0.9208007322096532
- License:
- Abstract: The phase folding optimization is a circuit optimization used in many quantum compilers as a fast and effective way of reducing the number of high-cost gates in a quantum circuit. However, existing formulations of the optimization rely on an exact, linear algebraic representation of the circuit, restricting the optimization to being performed on straightline quantum circuits or basic blocks in a larger quantum program. We show that the phase folding optimization can be re-cast as an \emph{affine relation analysis}, which allows the direct application of classical techniques for affine relations to extend phase folding to quantum \emph{programs} with arbitrarily complicated classical control flow including nested loops and procedure calls. Through the lens of relational analysis, we show that the optimization can be powered-up by substituting other classical relational domains, particularly ones for \emph{non-linear} relations which are useful in analyzing circuits involving classical arithmetic. To increase the precision of our analysis and infer non-linear relations from gate sets involving only linear operations -- such as Clifford+$T$ -- we show that the \emph{sum-over-paths} technique can be used to extract precise symbolic transition relations for straightline circuits. Our experiments show that our methods are able to generate and use non-trivial loop invariants for quantum program optimization, as well as achieve some optimizations of common circuits which were previously attainable only by hand.
Related papers
- Quantum algorithms for the variational optimization of correlated electronic states with stochastic reconfiguration and the linear method [0.0]
We present quantum algorithms for the variational optimization of wavefunctions correlated by products of unitary operators.
While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is in system size.
arXiv Detail & Related papers (2024-08-03T17:53:35Z) - Quantum Circuit Unoptimization [0.6449786007855248]
We construct a quantum algorithmic primitive called quantum circuit unoptimization.
It makes a given quantum circuit complex by introducing some redundancies while preserving circuit equivalence.
We use quantum circuit unoptimization to generate compiler benchmarks and evaluate circuit optimization performance.
arXiv Detail & Related papers (2023-11-07T08:38:18Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Optimizing quantum circuits with Riemannian gradient flow [0.5524804393257919]
Variational quantum algorithms are a promising class algorithms that can be performed on currently available quantum computers.
We consider an alternative optimization perspective that depends on the structure of the special unitary group.
arXiv Detail & Related papers (2022-02-14T19:00:06Z) - Hybrid quantum-classical circuit simplification with the ZX-calculus [0.0]
This work uses an extension of the formal graphical ZX-calculus called ZX-ground as an intermediary representation of the hybrid circuits.
We derive a number of gFlow-preserving optimization rules for ZX-ground diagrams that reduce the size of the graph.
We present a general procedure for detecting segments of circuit-like ZX-ground diagrams which can be implemented with classical gates in the extracted circuit.
arXiv Detail & Related papers (2021-09-13T15:45:56Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Optimized Low-Depth Quantum Circuits for Molecular Electronic Structure
using a Separable Pair Approximation [0.0]
We present a classically solvable model that leads to optimized low-depth quantum circuits leveraging separable pair approximations.
The obtained circuits are well suited as a baseline circuit for emerging quantum hardware and can, in the long term, provide significantly improved initial states for quantum algorithms.
arXiv Detail & Related papers (2021-05-09T05:10:59Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.