Rethinking Inverse Reinforcement Learning: from Data Alignment to Task Alignment
- URL: http://arxiv.org/abs/2410.23680v1
- Date: Thu, 31 Oct 2024 07:08:14 GMT
- Title: Rethinking Inverse Reinforcement Learning: from Data Alignment to Task Alignment
- Authors: Weichao Zhou, Wenchao Li,
- Abstract summary: imitation learning (IL) algorithms use inverse reinforcement learning (IRL) to infer a reward function that aligns with a demonstration.
We propose a novel framework for IRL-based IL that prioritizes task alignment over conventional data alignment.
- Score: 7.477559660351106
- License:
- Abstract: Many imitation learning (IL) algorithms use inverse reinforcement learning (IRL) to infer a reward function that aligns with the demonstration. However, the inferred reward functions often fail to capture the underlying task objectives. In this paper, we propose a novel framework for IRL-based IL that prioritizes task alignment over conventional data alignment. Our framework is a semi-supervised approach that leverages expert demonstrations as weak supervision to derive a set of candidate reward functions that align with the task rather than only with the data. It then adopts an adversarial mechanism to train a policy with this set of reward functions to gain a collective validation of the policy's ability to accomplish the task. We provide theoretical insights into this framework's ability to mitigate task-reward misalignment and present a practical implementation. Our experimental results show that our framework outperforms conventional IL baselines in complex and transfer learning scenarios.
Related papers
- Sample-Efficient Curriculum Reinforcement Learning for Complex Reward Functions [5.78463306498655]
Reinforcement learning (RL) shows promise in control problems, but its practical application is often hindered by the complexity arising from intricate reward functions with constraints.
We propose a novel two-stage reward curriculum combined with a flexible replay buffer that adaptively samples experiences.
Our approach first learns on a subset of rewards before transitioning to the full reward, allowing the agent to learn trade-offs between objectives and constraints.
arXiv Detail & Related papers (2024-10-22T08:07:44Z) - Active Fine-Tuning of Generalist Policies [54.65568433408307]
We propose AMF (Active Multi-task Fine-tuning) to maximize multi-task policy performance under a limited demonstration budget.
We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness in complex and high-dimensional environments.
arXiv Detail & Related papers (2024-10-07T13:26:36Z) - PAGAR: Taming Reward Misalignment in Inverse Reinforcement
Learning-Based Imitation Learning with Protagonist Antagonist Guided
Adversarial Reward [8.83374617444803]
We introduce a semi-supervised reward design paradigm called Protagonist Antagonist Guided Adrial Reward (PAGAR)
PAGAR-based IL trains a policy to perform well under mixed reward functions instead of a single reward function as in IRL-based IL.
We show that our algorithm outperforms standard IL baselines in complex tasks and challenging transfer settings.
arXiv Detail & Related papers (2023-06-02T17:57:53Z) - CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
This work aims to tackle a major challenge in offline Inverse Reinforcement Learning (IRL)
We devise a principled algorithm (namely CLARE) that solves offline IRL efficiently via integrating "conservatism" into a learned reward function.
Our theoretical analysis provides an upper bound on the return gap between the learned policy and the expert policy.
arXiv Detail & Related papers (2023-02-09T17:16:29Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
We study the problem of learning a good set of policies, so that when combined together, they can solve a wide variety of unseen reinforcement learning tasks.
We show theoretically that having access to a specific set of diverse policies, which we call a set of independent policies, can allow for instantaneously achieving high-level performance.
arXiv Detail & Related papers (2021-12-30T12:20:46Z) - Off-Policy Reinforcement Learning with Delayed Rewards [16.914712720033524]
In many real-world tasks, instant rewards are not readily accessible or defined immediately after the agent performs actions.
In this work, we first formally define the environment with delayed rewards and discuss the challenges raised due to the non-Markovian nature of such environments.
We introduce a general off-policy RL framework with a new Q-function formulation that can handle the delayed rewards with theoretical convergence guarantees.
arXiv Detail & Related papers (2021-06-22T15:19:48Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.