論文の概要: Artificial intelligence to improve clinical coding practice in Scandinavia: a crossover randomized controlled trial
- arxiv url: http://arxiv.org/abs/2410.23725v1
- Date: Thu, 31 Oct 2024 08:24:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:56.213466
- Title: Artificial intelligence to improve clinical coding practice in Scandinavia: a crossover randomized controlled trial
- Title(参考訳): スカンジナビアにおける臨床コーディングの実践を改善する人工知能--クロスオーバーランダム化比較試験
- Authors: Taridzo Chomutare, Therese Olsen Svenning, Miguel Ángel Tejedor Hernández, Phuong Dinh Ngo, Andrius Budrionis, Kaisa Markljung, Lill Irene Hind, Torbjørn Torsvik, Karl Øyvind Mikalsen, Aleksandar Babic, Hercules Dalianis,
- Abstract要約: ノルウェーとスウェーデンでのユーザスタディでは,精度と時間の両方を改善するために,Easy-ICDを試験した。
結果: クリニカルテキスト配列の平均符号化時間差は123秒 (emphPtextless.001,95% CI:81~164) であった。
コーディングの精度については、複雑なテキストと単純なテキストの両方の改善は重要ではなかった。
- 参考スコア(独自算出の注目度): 33.06836024925378
- License:
- Abstract: \textbf{Trial design} Crossover randomized controlled trial. \textbf{Methods} An AI tool, Easy-ICD, was developed to assist clinical coders and was tested for improving both accuracy and time in a user study in Norway and Sweden. Participants were randomly assigned to two groups, and crossed over between coding complex (longer) texts versus simple (shorter) texts, while using our tool versus not using our tool. \textbf{Results} Based on Mann-Whitney U test, the median coding time difference for complex clinical text sequences was 123 seconds (\emph{P}\textless.001, 95\% CI: 81 to 164), representing a 46\% reduction in median coding time when our tool is used. There was no significant time difference for simpler text sequences. For coding accuracy, the improvement we noted for both complex and simple texts was not significant. \textbf{Conclusions} This study demonstrates the potential of AI to transform common tasks in clinical workflows, with ostensible positive impacts on work efficiencies for complex clinical coding tasks. Further studies within hospital workflows are required before these presumed impacts can be more clearly understood.
- Abstract(参考訳): \textbf{Trial design} クロスオーバーランダム化制御トライアル。
\textbf{Methods} AIツールであるEasy-ICDは、臨床コーダーを支援するために開発され、ノルウェーとスウェーデンでのユーザスタディにおいて、正確性と時間の両方を改善するためにテストされた。
参加者はランダムに2つのグループに割り当てられ、コーディングの複雑な(より長い)テキストと単純な(厳しい)テキストの間で交差した。
\textbf{Results} Mann-Whitney U テストに基づく複雑な臨床テキストシーケンスのコーディング時間中央値は 123 秒 (\emph{P}\textless.001, 95\% CI: 81~164) であり、ツールの使用時のコーディング時間中央値の 46 % 削減を表す。
単純なテキストシーケンスには大きな時間差はなかった。
コーディングの精度については、複雑なテキストと単純なテキストの両方の改善は重要ではなかった。
この研究は、AIが臨床ワークフローにおける共通タスクを変換する可能性を示し、複雑な臨床コーディングタスクの作業効率に顕著なポジティブな影響を与えている。
これらの影響がより明確に理解される前に、病院のワークフロー内でのさらなる研究が必要である。
関連論文リスト
- MedCodER: A Generative AI Assistant for Medical Coding [3.7153274758003967]
我々は、自動医療コーディングのためのジェネレーティブAIフレームワークであるMedCodERを紹介する。
MedCodERは、ICD(International Classification of Diseases)コード予測において、マイクロF1スコアの0.60を達成している。
疾患診断,ICD符号,エビデンステキストを付加した医療記録を含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-18T19:36:33Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Zero-Shot Clinical Trial Patient Matching with LLMs [40.31971412825736]
大規模言語モデル(LLM)は、自動スクリーニングの有望なソリューションを提供する。
我々は,患者の診療歴を非構造的臨床テキストとして考慮し,その患者が包括的基準を満たしているかどうかを評価するLCMベースのシステムを構築した。
提案システムは,n2c2 2018コホート選択ベンチマークにおいて,最先端のスコアを達成している。
論文 参考訳(メタデータ) (2024-02-05T00:06:08Z) - Medical Text Simplification: Optimizing for Readability with
Unlikelihood Training and Reranked Beam Search Decoding [18.06012822620814]
テキストの単純化は、医学などの専門分野におけるコミュニケーションギャップを埋めるために、AIのますます有用な応用として現れてきた。
顕著な進歩にもかかわらず、医学的単純化の手法は、品質と多様性の低い生成されたテキストをもたらすことがある。
そこで本研究では,より単純な用語を生成するための新たな異義性損失と,シンプルさを最適化する再帰的ビーム探索復号法を提案する。
論文 参考訳(メタデータ) (2023-10-17T12:14:03Z) - Task-Adaptive Tokenization: Enhancing Long-Form Text Generation Efficacy
in Mental Health and Beyond [66.07002187192448]
本稿では,下流タスクの特定部分に生成パイプラインを適応させる手法として,タスク適応型トークン化を提案する。
専門用語を構築するための戦略を導入し、語彙統合プロトコルを導入する。
タスク適応型トークン化アプローチでは、最大60%のトークンを使用しながら、生成パフォーマンスが大幅に向上することが分かりました。
論文 参考訳(メタデータ) (2023-10-09T00:20:59Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - A Multi-View Joint Learning Framework for Embedding Clinical Codes and
Text Using Graph Neural Networks [23.06795121693656]
我々は,テキストの可用性と前方性,およびICDコードの性能向上を両立させるため,コードとテキストから学習するフレームワークを提案する。
我々のアプローチでは、ICDコードを処理するグラフニューラルネットワーク(GNN)と、テキストを処理するBi-LSTMを用いています。
計画された外科手術用テキストを用いた実験では,BERTモデルが臨床データに微調整されたモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-01-27T09:19:03Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。