論文の概要: Assessing the Impact of Packing on Machine Learning-Based Malware Detection and Classification Systems
- arxiv url: http://arxiv.org/abs/2410.24017v1
- Date: Thu, 31 Oct 2024 15:19:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:13.078259
- Title: Assessing the Impact of Packing on Machine Learning-Based Malware Detection and Classification Systems
- Title(参考訳): 機械学習によるマルウェア検出・分類システムにおけるパッケージングの影響評価
- Authors: Daniel Gibert, Nikolaos Totosis, Constantinos Patsakis, Giulio Zizzo, Quan Le,
- Abstract要約: マルウェアの拡散は静的解析と署名に基づくマルウェア検出技術に重大な課題をもたらす。
元の実行可能コードへのパッキングの適用は、意味のある機能やシグネチャを抽出する。
本研究は,マルウェアの検出と分類に使用される静的機械学習モデルの性能に及ぼすパッキングの影響について検討する。
- 参考スコア(独自算出の注目度): 6.495333199859017
- License:
- Abstract: The proliferation of malware, particularly through the use of packing, presents a significant challenge to static analysis and signature-based malware detection techniques. The application of packing to the original executable code renders extracting meaningful features and signatures challenging. To deal with the increasing amount of malware in the wild, researchers and anti-malware companies started harnessing machine learning capabilities with very promising results. However, little is known about the effects of packing on static machine learning-based malware detection and classification systems. This work addresses this gap by investigating the impact of packing on the performance of static machine learning-based models used for malware detection and classification, with a particular focus on those using visualisation techniques. To this end, we present a comprehensive analysis of various packing techniques and their effects on the performance of machine learning-based detectors and classifiers. Our findings highlight the limitations of current static detection and classification systems and underscore the need to be proactive to effectively counteract the evolving tactics of malware authors.
- Abstract(参考訳): マルウェアの拡散は、特にパッキングによって、静的解析と署名に基づくマルウェア検出技術に重大な課題をもたらす。
元の実行可能コードへのパッキングの適用は、意味のある機能やシグネチャを抽出する。
マルウェアの増加に対処するため、研究者やマルウェア対策会社は、機械学習の能力を非常に有望な結果に活用し始めた。
しかし、静的機械学習に基づくマルウェア検出と分類システムに対するパッキングの影響についてはほとんど分かっていない。
この研究は、マルウェアの検出と分類に使用される静的機械学習ベースのモデルの性能にパッキングが与える影響を調査することによって、このギャップに対処する。
そこで本研究では,各種パッキング手法の包括的解析と,機械学習に基づく検出器と分類器の性能への影響について述べる。
本研究は, 現状の静的検出・分類システムの限界を浮き彫りにして, マルウェア作者の進化戦略を効果的に対処する必要性を浮き彫りにするものである。
関連論文リスト
- Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
近年,定量化によるマルウェア検出から機械学習への移行が進んでいる。
本稿では、EMBERから始まるバイナリファイルの類似性研究の領域における欠陥に対処することを提案する。
我々は、EMBERに類似情報とマルウェアのクラスタグを付与し、類似性空間のさらなる研究を可能にする。
論文 参考訳(メタデータ) (2023-10-03T06:58:45Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment [12.558284943901613]
本稿では,マルウェア解析の異なる視点を考察し,各サンプルの特徴のリスクレベルを算出した。
通常の機械学習基準、すなわち精度とFPRに加えて、サンプルのリスクに基づく基準も提案されている。
その結果,ディープ・ラーニング・アプローチがマルウェアの検出に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-04-04T17:56:55Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Interpreting Machine Learning Malware Detectors Which Leverage N-gram
Analysis [2.6397379133308214]
サイバーセキュリティアナリストは、常にルールベースや署名ベースの検出と同じくらい解釈可能で理解可能なソリューションを好む。
本研究の目的は,MLベースのマルウェア検出装置に適用した場合の,最先端のMLモデルの解釈可能性の評価である。
論文 参考訳(メタデータ) (2020-01-27T19:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。