ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
- URL: http://arxiv.org/abs/2410.24214v1
- Date: Thu, 31 Oct 2024 17:59:37 GMT
- Title: ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
- Authors: Yuchen Yang, Shubham Ugare, Yifan Zhao, Gagandeep Singh, Sasa Misailovic,
- Abstract summary: Mixed precision quantization has become an important technique for enabling the execution of deep neural networks (DNNs) on limited resource computing platforms.
This paper introduces ARQ, an innovative mixed-precision quantization method that not only preserves the clean accuracy of the smoothed classifiers but also maintains their certified robustness.
- Score: 15.43153209571646
- License:
- Abstract: Mixed precision quantization has become an important technique for enabling the execution of deep neural networks (DNNs) on limited resource computing platforms. Traditional quantization methods have primarily concentrated on maintaining neural network accuracy, either ignoring the impact of quantization on the robustness of the network, or using only empirical techniques for improving robustness. In contrast, techniques for robustness certification, which can provide strong guarantees about the robustness of DNNs have not been used during quantization due to their high computation cost. This paper introduces ARQ, an innovative mixed-precision quantization method that not only preserves the clean accuracy of the smoothed classifiers but also maintains their certified robustness. ARQ uses reinforcement learning to find accurate and robust DNN quantization, while efficiently leveraging randomized smoothing, a popular class of statistical DNN verification algorithms, to guide the search process. We compare ARQ with multiple state-of-the-art quantization techniques on several DNN architectures commonly used in quantization studies: ResNet-20 on CIFAR-10, ResNet-50 on ImageNet, and MobileNetV2 on ImageNet. We demonstrate that ARQ consistently performs better than these baselines across all the benchmarks and the input perturbation levels. In many cases, the performance of ARQ quantized networks can reach that of the original DNN with floating-point weights, but with only 1.5% instructions.
Related papers
- AdaQAT: Adaptive Bit-Width Quantization-Aware Training [0.873811641236639]
Large-scale deep neural networks (DNNs) have achieved remarkable success in many application scenarios.
Model quantization is a common approach to deal with deployment constraints, but searching for optimized bit-widths can be challenging.
We present Adaptive Bit-Width Quantization Aware Training (AdaQAT), a learning-based method that automatically optimize bit-widths during training for more efficient inference.
arXiv Detail & Related papers (2024-04-22T09:23:56Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference.
This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization.
Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets.
arXiv Detail & Related papers (2024-04-15T03:07:16Z) - Quantized Approximately Orthogonal Recurrent Neural Networks [6.524758376347808]
We explore the quantization of the weight matrices in ORNNs, leading to Quantized approximately Orthogonal RNNs (QORNNs)
We propose and investigate two strategies to learn QORNN by combining quantization-aware training (QAT) and computation projections.
The most efficient models achieve results similar to state-of-the-art full-precision ORNN, LSTM and FastRNN on a variety of standard benchmarks, even with 4-bits quantization.
arXiv Detail & Related papers (2024-02-05T09:59:57Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
Quantization has emerged as a promising technique to reduce the size of neural networks with comparable accuracy as their floating-point numbered counterparts.
We propose a novel and efficient formal verification approach for QNNs.
In particular, we are the first to propose an encoding that reduces the verification problem of QNNs into the solving of integer linear constraints.
arXiv Detail & Related papers (2022-12-10T03:00:29Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNNs) have received much attention due to being potentially orders of magnitude faster in inference, as well as more power efficient, than full-precision counterparts.
In this work, we show that, under some mild constraints, computational complexity of the ternary inner product can be reduced by a factor of 2.
We elaborately design an implementation-dependent ternary quantization algorithm to mitigate the performance gap.
arXiv Detail & Related papers (2020-08-12T04:26:18Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
This paper presents a no-reference IQA metric based on deep meta-learning.
We first collect a number of NR-IQA tasks for different distortions.
Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions.
Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-04-11T23:36:36Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.