論文の概要: Improving Math Problem Solving in Large Language Models Through Categorization and Strategy Tailoring
- arxiv url: http://arxiv.org/abs/2411.00042v2
- Date: Sun, 17 Nov 2024 00:59:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:40.895257
- Title: Improving Math Problem Solving in Large Language Models Through Categorization and Strategy Tailoring
- Title(参考訳): 分類と戦略表作成による大規模言語モデルにおける数学問題の解法の改善
- Authors: Amogh Akella,
- Abstract要約: 問題分類のための機械学習モデルを開発し、よく設計されたトレーニングデータセットを作成することにより、その精度を著しく向上させることができることを示す。
LLMの幻覚を減らし、高度な数学的問題に対処する可能性を解き放つための重要なステップである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we investigate how to harness large language models (LLMs) to solve mathematical problems both quickly and accurately. Specifically, we demonstrate the effectiveness of classifying problems into distinct categories and applying category-specific problem-solving strategies to enhance the math performance of LLMs. We develop a straightforward machine learning model for problem categorization and show that its accuracy can be significantly improved through the creation of well-designed training datasets. We believe that our approach works by helping reduce hallucinations in LLMs, which is a critical step toward unlocking their potential to tackle advanced mathematical problems.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いて数学的問題を迅速かつ正確に解く方法について検討する。
具体的には,問題を異なるカテゴリに分類し, LLMの数学性能を高めるためにカテゴリ固有の問題解決戦略を適用することの有効性を実証する。
問題分類のための簡単な機械学習モデルを開発し、よく設計されたトレーニングデータセットを作成することにより、その精度を著しく向上させることができることを示す。
LLMの幻覚を減らし、高度な数学的問題に対処する可能性を解き放つための重要なステップである。
関連論文リスト
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
既存のリウェイト戦略は主にグループレベルのデータの重要性に焦点を当てている。
動的・インスタンスレベルのデータ再重み付けのための新しいアルゴリズムを提案する。
当社のフレームワークでは,冗長データや非形式データを優先的に再重み付けする戦略を考案することが可能です。
論文 参考訳(メタデータ) (2025-02-10T17:57:15Z) - Multi-Level Attention and Contrastive Learning for Enhanced Text Classification with an Optimized Transformer [0.0]
本稿では,テキスト分類タスクにおけるモデルの性能と効率を改善するために,改良されたトランスフォーマーに基づくテキスト分類アルゴリズムについて検討する。
改良されたTransformerモデルは、BiLSTM、CNN、標準Transformer、BERTといった比較モデルよりも、分類精度、F1スコア、リコールレートで優れている。
論文 参考訳(メタデータ) (2025-01-23T08:32:27Z) - Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach [9.88281854509076]
特徴量削減手法として線形判別分析 (LDA) を実装し, モデルの複雑さの軽減を図る。
我々のハイブリッドモデルであるXG-DNNは、99.45%の精度と99%のF1スコアでLDAを上回りました。
モデル決定を解釈するために、LIME (local) と Morris Sensitivity Analysis (global) という2つの異なる説明可能なAI技術を適用した。
論文 参考訳(メタデータ) (2024-12-05T14:21:18Z) - Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
本稿では,データ拡張とモデルファインチューニングを融合することで,少数ショット学習を向上するための革新的なアプローチを提案する。
薬物発見、ターゲット認識、悪意のあるトラフィック検出などの分野で、小さなサンプルデータによって引き起こされる課題に対処することを目的としている。
その結果,本研究で開発されたMhERGANアルゴリズムは,数発の学習に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-11-25T16:51:11Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
LLMs-as-Instructors"フレームワークは、より小さなターゲットモデルのトレーニングを自律的に強化する。
このフレームワークは、"Learning from Errors"理論にインスパイアされ、ターゲットモデル内の特定のエラーを注意深く分析するインストラクターLLMを使用している。
本フレームワークでは,適切なトレーニングデータに対する誤応答のみに焦点を当てた「エラーからの学習」と,比較学習を用いて誤りの深い理解を行う「コントラストによるエラーからの学習」という2つの戦略を実装している。
論文 参考訳(メタデータ) (2024-06-29T17:16:04Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
ニューラルネットワークを用いて、異なるトレーニングセットに対して最適化されたモデルパラメータを推定するフレームワークを提案する。
我々は、凸問題を近似するためにニューラルネットワークのパワーを厳格に特徴づける。
論文 参考訳(メタデータ) (2021-11-24T15:28:50Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。