論文の概要: Evolving Alignment via Asymmetric Self-Play
- arxiv url: http://arxiv.org/abs/2411.00062v1
- Date: Thu, 31 Oct 2024 08:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:48.547505
- Title: Evolving Alignment via Asymmetric Self-Play
- Title(参考訳): 非対称セルフプレイによるアライメントの進化
- Authors: Ziyu Ye, Rishabh Agarwal, Tianqi Liu, Rishabh Joshi, Sarmishta Velury, Quoc V. Le, Qijun Tan, Yuan Liu,
- Abstract要約: 本稿では、2人のプレーヤー間の非対称ゲームとしてアライメントをキャストする一般オープンエンドなRLHFフレームワークを提案する。
Asymmetric Self-Play (eva) によるアライメントの進化(Evolving Alignment)というこのフレームワークは、既存のRLHFアルゴリズムを拡張性のあるアライメントに利用できるシンプルで効率的なアプローチをもたらす。
- 参考スコア(独自算出の注目度): 52.3079697845254
- License:
- Abstract: Current RLHF frameworks for aligning large language models (LLMs) typically assume a fixed prompt distribution, which is sub-optimal and limits the scalability of alignment and generalizability of models. To address this, we introduce a general open-ended RLHF framework that casts alignment as an asymmetric game between two players: (i) a creator that generates increasingly informative prompt distributions using the reward model, and (ii) a solver that learns to produce more preferred responses on prompts produced by the creator. This framework of Evolving Alignment via Asymmetric Self-Play (eva), results in a simple and efficient approach that can utilize any existing RLHF algorithm for scalable alignment. eva outperforms state-of-the-art methods on widely-used benchmarks, without the need of any additional human crafted prompts. Specifically, eva improves the win rate of Gemma-2-9B-it on Arena-Hard from 51.6% to 60.1% with DPO, from 55.7% to 58.9% with SPPO, from 52.3% to 60.7% with SimPO, and from 54.8% to 60.3% with ORPO, surpassing its 27B version and matching claude-3-opus. This improvement is persistent even when new human crafted prompts are introduced. Finally, we show eva is effective and robust under various ablation settings.
- Abstract(参考訳): 大規模言語モデル(LLM)の整合化のための現在のRLHFフレームワークは、一般に固定されたプロンプト分布を前提としており、これはサブ最適であり、モデルの整合性と一般化可能性のスケーラビリティを制限する。
これを解決するために、我々は2人のプレイヤー間の非対称ゲームとしてアライメントをキャストする一般のオープンエンドRLHFフレームワークを導入する。
一 報酬モデルを用いて情報発信の促進を図る創造者
(二 創造者が生み出すプロンプトについて、より望ましい回答を得られることを学習する解法。)
非対称セルフプレイによるアライメントの進化(eva)というこのフレームワークは、既存のRLHFアルゴリズムを拡張性のあるアライメントに利用できるシンプルで効率的なアプローチをもたらす。
evaは、人手による追加のプロンプトを必要とせずに、広く使用されているベンチマークで最先端の手法より優れている。
具体的には、Arena-HardにおけるGemma-2-9B-itの勝利率は51.6%から60.1%に、SPPOでは55.7%から58.9%に、SimPOでは52.3%から60.7%に、ORPOでは54.8%から60.3%に改善され、27Bバージョンを超え、クロード3-opusと一致する。
この改善は、新しい人造プロンプトが導入されても継続する。
最後に,様々なアブレーション条件下では,エバは有効で堅牢であることを示す。
関連論文リスト
- Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
本稿では,モデル性能をさらに向上させるために,補完的な直接選好学習手法について検討する。
既存の直接選好学習アルゴリズムは、もともとシングルターンチャットタスク用に設計されている。
この文脈に合わせたマルチターン直接選好学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T02:41:04Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
我々は、新しいオンラインアルゴリズム、反復的ナッシュポリシー最適化(INPO)を提案する。
従来の方法とは異なり、INPOは個々の応答に対する期待される勝利率を推定する必要性を回避している。
LLaMA-3-8BベースのSFTモデルで、INPOはAlpacaEval 2.0で42.6%、Arena-Hardで37.8%の勝利率を達成した。
論文 参考訳(メタデータ) (2024-06-30T08:00:34Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - SimPO: Simple Preference Optimization with a Reference-Free Reward [43.136307294076545]
直接選好最適化 (DPO) は、広く使われているオフライン選好最適化アルゴリズムである。
我々はDPOに対するよりシンプルで効果的なアプローチであるSimPOを提案する。
SimPO は、応答長を大幅に増加させることなく、DPO を一貫して大幅に上回る。
論文 参考訳(メタデータ) (2024-05-23T16:01:46Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Iterative Reasoning Preference Optimization [84.15992372132507]
生成したChain-of-Thought(CoT)候補間の嗜好を最適化するための反復的アプローチを開発する。
このスキームの繰り返し繰り返しにおける推論の改善を示す。
例えば、GSM8Kは55.6%から81.6%に大きく改善され、精度は88.7%となり、32のサンプルのうち多数が投票した。
論文 参考訳(メタデータ) (2024-04-30T17:28:05Z) - Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences [21.5605000515622]
本稿では,大言語モデル(LLM)の学習後,オラクルからの嗜好フィードバックを用いて,モデル自体を反復的に改善する手法について検討する。
提案手法は,理論的な一般化と対照的な学習の単純さと安定性を,一般の選好の最適化からマージする,証明可能かつ効率的なアルゴリズムである。
実験で得られた 7B パラメータ Orca-2.5 モデルは,AlpacaE 2.0 上で 33% の GPT-4-Turbo に対して,初期化モデルに対して 26% (7% から 33%) の絶対ゲインを達成した。
論文 参考訳(メタデータ) (2024-04-04T17:56:41Z) - Aligner: Efficient Alignment by Learning to Correct [10.056049435141645]
モデルに依存しないプラグアンドプレイモジュールであるAlignerを導入し、好ましくない回答と好ましくない回答の補正残差を学習する。
トレーニングはワンオフで、さまざまなオープンソースおよびAPIベースのモデルに適用できるため、迅速なイテレーションに適している。
実験では、11の異なる言語モデルに同じAlignerモデルをデプロイすることで、パフォーマンスの向上を実証した。
論文 参考訳(メタデータ) (2024-02-04T09:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。