Evolving Alignment via Asymmetric Self-Play
- URL: http://arxiv.org/abs/2411.00062v1
- Date: Thu, 31 Oct 2024 08:15:32 GMT
- Title: Evolving Alignment via Asymmetric Self-Play
- Authors: Ziyu Ye, Rishabh Agarwal, Tianqi Liu, Rishabh Joshi, Sarmishta Velury, Quoc V. Le, Qijun Tan, Yuan Liu,
- Abstract summary: We introduce a general open-ended RLHF framework that casts alignment as an asymmetric game between two players.
This framework of Evolving Alignment via Asymmetric Self-Play (eva) results in a simple and efficient approach that can utilize any existing RLHF algorithm for scalable alignment.
- Score: 52.3079697845254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current RLHF frameworks for aligning large language models (LLMs) typically assume a fixed prompt distribution, which is sub-optimal and limits the scalability of alignment and generalizability of models. To address this, we introduce a general open-ended RLHF framework that casts alignment as an asymmetric game between two players: (i) a creator that generates increasingly informative prompt distributions using the reward model, and (ii) a solver that learns to produce more preferred responses on prompts produced by the creator. This framework of Evolving Alignment via Asymmetric Self-Play (eva), results in a simple and efficient approach that can utilize any existing RLHF algorithm for scalable alignment. eva outperforms state-of-the-art methods on widely-used benchmarks, without the need of any additional human crafted prompts. Specifically, eva improves the win rate of Gemma-2-9B-it on Arena-Hard from 51.6% to 60.1% with DPO, from 55.7% to 58.9% with SPPO, from 52.3% to 60.7% with SimPO, and from 54.8% to 60.3% with ORPO, surpassing its 27B version and matching claude-3-opus. This improvement is persistent even when new human crafted prompts are introduced. Finally, we show eva is effective and robust under various ablation settings.
Related papers
- RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning [125.65034908728828]
Training large language models (LLMs) as interactive agents presents unique challenges.
While reinforcement learning has enabled progress in static tasks, multi-turn agent RL training remains underexplored.
We propose StarPO, a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents.
arXiv Detail & Related papers (2025-04-24T17:57:08Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)
RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.
Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.
We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
This paper studies the complementary direct preference learning approach to further improve model performance.
Existing direct preference learning algorithms are originally designed for the single-turn chat task.
We introduce a multi-turn direct preference learning framework, tailored for this context.
arXiv Detail & Related papers (2024-09-04T02:41:04Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
We propose a novel online algorithm, iterative Nash policy optimization (INPO)
Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses.
With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard.
arXiv Detail & Related papers (2024-06-30T08:00:34Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
We propose a simple, effective, and data-efficient method called Step-DPO.
Step-DPO treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically.
Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters.
arXiv Detail & Related papers (2024-06-26T17:43:06Z) - ARES: Alternating Reinforcement Learning and Supervised Fine-Tuning for Enhanced Multi-Modal Chain-of-Thought Reasoning Through Diverse AI Feedback [13.154512864498912]
We propose a two-stage algorithm ARES that Alternates REinforcement Learning (RL) and Supervised Fine-Tuning (SFT)
First, we request the Teacher to score how much each sentence contributes to solving the problem in a Chain-of-Thought (CoT)
Second, we ask the Teacher to correct the wrong reasoning after the RL stage. With the correction feedback, we stabilize the RL fine-tuned model through SFT.
arXiv Detail & Related papers (2024-06-25T07:20:11Z) - Evolving Subnetwork Training for Large Language Models [19.54861230097017]
We propose a novel training paradigm: Evolving Subnetwork Training (EST)
EST samplesworks from the layers of the large language model and from commonly used modules within each layer.
We apply EST to train GPT2 model and TinyLlama model, resulting in 26.7% FLOPs saving for GPT2 and 25.0% for TinyLlama without an increase in loss on the pre-training dataset.
arXiv Detail & Related papers (2024-06-11T05:44:56Z) - SimPO: Simple Preference Optimization with a Reference-Free Reward [43.136307294076545]
Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm.
We propose SimPO, a simpler yet more effective approach to DPO.
SimPO consistently and significantly outperforms DPO without substantially increasing response length.
arXiv Detail & Related papers (2024-05-23T16:01:46Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Iterative Reasoning Preference Optimization [84.15992372132507]
We develop an iterative approach to optimize the preference between generated Chain-of-Thought (CoT) candidates.
We show reasoning improves across repeated iterations of this scheme.
For example, we see a large improvement from 55.6% to 81.6% on GSM8K and an accuracy of 88.7% with majority voting out of 32 samples.
arXiv Detail & Related papers (2024-04-30T17:28:05Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to expedite alignment training with human preferences.
We demonstrate that ExPO boosts a DPO model trained with only 20% steps to outperform the fully-trained one.
We show that ExPO notably improves existing open-source LLMs on the leading AlpacaEval 2.0 and MT-Bench benchmarks.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences [21.5605000515622]
This paper studies post-training large language models (LLMs) using preference feedback from an oracle to help a model iteratively improve over itself.
We introduce Direct Nash Optimization (DNO), a provable and efficient algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences.
In our experiments, a resulting 7B parameter Orca-2.5 model achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaE 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model
arXiv Detail & Related papers (2024-04-04T17:56:41Z) - Direct Language Model Alignment from Online AI Feedback [78.40436231613754]
Direct alignment from preferences (DAP) methods have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF)
In this study, we posit that online feedback is key and improves DAP methods.
Our method, online AI feedback (OAIF) uses an LLM as annotator: on each training, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback.
arXiv Detail & Related papers (2024-02-07T12:31:13Z) - Aligner: Efficient Alignment by Learning to Correct [10.056049435141645]
We introduce Aligner, a model-agnostic, plug-and-play module that learns the correctional residuals between preferred and dispreferred answers.
It can be applied to various open-source and API-based models with only one-off training, making it suitable for rapid iteration.
Our experiments demonstrate performance improvements by deploying the same Aligner model across 11 different language models.
arXiv Detail & Related papers (2024-02-04T09:24:51Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.