Reinforcement learning with learned gadgets to tackle hard quantum problems on real hardware
- URL: http://arxiv.org/abs/2411.00230v2
- Date: Fri, 02 May 2025 06:39:57 GMT
- Title: Reinforcement learning with learned gadgets to tackle hard quantum problems on real hardware
- Authors: Akash Kundu, Leopoldo Sarra,
- Abstract summary: We introduce gadget reinforcement learning (GRL), which integrates reinforcement learning with program synthesis to automatically generate and incorporate composite gates (gadgets) into the action space.<n>This enhances the exploration of parameterized quantum circuits (PQCs) for complex tasks like approximating ground states of quantum Hamiltonians, an NP-hard problem.<n>GRL exhibits robust performance as the size and complexity of the problem increases, even with constrained computational resources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing quantum circuits for specific tasks is challenging due to the exponential growth of the state space. We introduce gadget reinforcement learning (GRL), which integrates reinforcement learning with program synthesis to automatically generate and incorporate composite gates (gadgets) into the action space. This enhances the exploration of parameterized quantum circuits (PQCs) for complex tasks like approximating ground states of quantum Hamiltonians, an NP-hard problem. We evaluate GRL using the transverse field Ising model under typical computational budgets (e.g., 2- 3 days of GPU runtime). Our results show improved accuracy, hardware compatibility and scalability. GRL exhibits robust performance as the size and complexity of the problem increases, even with constrained computational resources. By integrating gadget extraction, GRL facilitates the discovery of reusable circuit components tailored for specific hardware, bridging the gap between algorithmic design and practical implementation. This makes GRL a versatile framework for optimizing quantum circuits with applications in hardware-specific optimizations and variational quantum algorithms. The code is available at: https://github.com/Aqasch/Gadget_RL
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.
Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
arXiv Detail & Related papers (2025-04-29T14:10:10Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Scaling the Automated Discovery of Quantum Circuits via Reinforcement Learning with Gadgets [0.0]
Reinforcement Learning (RL) has established itself as a powerful tool for designing quantum circuits.<n>We propose a principled approach based on the systematic discovery and introduction of composite gates.<n>We demonstrate that incorporating gadgets in the form of composite Clifford gates, in addition to standard CNOT and Hadamard gates, significantly enhances the efficiency of RL agents.
arXiv Detail & Related papers (2025-03-14T17:55:49Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI.
We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods.
arXiv Detail & Related papers (2024-07-03T14:02:20Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - qgym: A Gym for Training and Benchmarking RL-Based Quantum Compilation [1.3496450124792878]
qgym is a framework for training and benchmarking RL agents and algorithms.
RL is a technique in which an agent interacts with an environment to learn complex policies to attain a specific goal.
Qgym can be used to train and benchmark RL agents and algorithms in highly customizable environments.
arXiv Detail & Related papers (2023-08-01T10:07:20Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
We tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task.
We use a novel encoding method for the RL-state, a dense reward function, and an $epsilon$-greedy policy to achieve this.
We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm.
arXiv Detail & Related papers (2023-06-19T17:59:04Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - A non-algorithmic approach to "programming" quantum computers via
machine learning [0.0]
We show that machine learning can be used as a systematic method to construct algorithms, that is, to non-algorithmically "program" quantum computers.
We demonstrate this using a fundamentally non-classical calculation: experimentally estimating the entanglement of an unknown quantum state.
Results from this have been successfully ported to the IBM hardware and trained using a hybrid reinforcement learning method.
arXiv Detail & Related papers (2020-07-16T13:36:21Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.