論文の概要: SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models
- arxiv url: http://arxiv.org/abs/2411.00233v1
- Date: Thu, 31 Oct 2024 22:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:33.040812
- Title: SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models
- Title(参考訳): SambaMixer:マンバ状態空間モデルを用いたリチウムイオン電池の健康予測
- Authors: José Ignacio Olalde-Verano, Sascha Kirch, Clara Pérez-Molina, Sergio Martin,
- Abstract要約: リチウムイオン電池の健康状態を予測するための新しい構造状態空間モデル(SSM)を提案する。
我々は,NASAのバッテリー放電データセット上でのモデルの評価を行い,このモデルが,このデータセットにおける最先端のモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The state of health (SOH) of a Li-ion battery is a critical parameter that determines the remaining capacity and the remaining lifetime of the battery. In this paper, we propose SambaMixer a novel structured state space model (SSM) for predicting the state of health of Li-ion batteries. The proposed SSM is based on the MambaMixer architecture, which is designed to handle multi-variate time signals. We evaluate our model on the NASA battery discharge dataset and show that our model outperforms the state-of-the-art on this dataset. We further introduce a novel anchor-based resampling method which ensures time signals are of the expected length while also serving as augmentation technique. Finally, we condition prediction on the sample time and the cycle time difference using positional encodings to improve the performance of our model and to learn recuperation effects. Our results proof that our model is able to predict the SOH of Li-ion batteries with high accuracy and robustness.
- Abstract(参考訳): リチウムイオン電池の健康状態(SOH)は、残容量と残寿命を決定する重要なパラメータである。
本稿では,Liイオン電池の健康状態を予測するための新しい構造化状態空間モデルであるSambaMixerを提案する。
提案したSSMは,多変量時間信号を処理するために設計されたMambaMixerアーキテクチャに基づいている。
我々は,NASAのバッテリー放電データセット上でのモデルの評価を行い,このモデルが,このデータセットにおける最先端のモデルよりも優れていることを示す。
さらに,時間信号が期待される長さであることを保証するとともに,拡張技術として機能するアンカーベースの新しい再サンプリング手法を提案する。
最後に、位置エンコーディングを用いてサンプル時間とサイクル時間差の予測を行い、モデルの性能を改善し、回復効果を学習する。
以上の結果から,Liイオン電池のSOHを高精度かつ堅牢に予測できることが示唆された。
関連論文リスト
- Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - Beam Prediction based on Large Language Models [51.45077318268427]
ミリ波(mmWave)通信は次世代無線ネットワークに期待できるが、パス損失は大きい。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-08-16T12:40:01Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
本稿では,加速器内の荷電粒子のダイナミクスを学習するための2段階の非教師付きディープラーニングフレームワークであるLatent Autoregressive Recurrent Model (CLARM)を提案する。
CLARMは、潜在空間表現をキャプチャしてデコードすることで、様々な加速器サンプリングモジュールでプロジェクションを生成することができる。
その結果,提案手法の予測能力と生成能力は,様々な評価指標と比較した場合に有望であることが示唆された。
論文 参考訳(メタデータ) (2024-03-19T22:05:17Z) - GPT4Battery: An LLM-driven Framework for Adaptive State of Health
Estimation of Raw Li-ion Batteries [20.144140373356194]
健康状態 (SOH) は、直接測定できないが推定を必要とする電池の劣化レベルを評価するための重要な指標である。
本稿では, 多様な電池にまたがる適応型SOH推定のための新しいフレームワークを提案する。
提案手法は,62個のバッテリから収集した4つの広く認識されているデータセットに対して,最先端の精度を実現する。
論文 参考訳(メタデータ) (2024-01-30T14:47:15Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
リチウムイオン電池(LIB)は今後数十年で電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化の診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
論文 参考訳(メタデータ) (2021-10-25T11:14:12Z) - Lithium-ion Battery State of Health Estimation based on Cycle
Synchronization using Dynamic Time Warping [13.19976118887128]
健康状態推定(SOH)は、電池容量の減少による予期せぬ故障を避けるために、電池駆動アプリケーションにおいて重要な役割を担っている。
本稿では、動的時間ワープを用いて、既存の座標系を変更するための革新的なサイクル同期手法を提案する。
提案手法は,時系列の時間情報を活用することで,時間指標と元の測定値を新しい指標に組み込んで,電池劣化状況を反映する。
論文 参考訳(メタデータ) (2021-09-28T02:53:54Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
本稿では, 電動トラックにおけるLiイオン電池の機械学習による健康状態(SoH)の予後について検討する。
バッテリーSoHを予測するための自動回帰型統合モデリング平均(ARIMA)と教師付き学習(決定木をベース見積もりとして袋詰め)を提案します。
論文 参考訳(メタデータ) (2021-03-30T12:19:21Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。