KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2411.00278v3
- Date: Tue, 08 Jul 2025 04:25:33 GMT
- Title: KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
- Authors: Quan Zhou, Changhua Pei, Fei Sun, Jing Han, Zhengwei Gao, Dan Pei, Haiming Zhang, Gaogang Xie, Jianhui Li,
- Abstract summary: Time series anomaly detection (TSAD) underpins real-time monitoring in cloud services and web systems.<n>Our analysis reveals that effective TSAD should focus on modeling "normal" behavior through smooth local patterns.<n>We propose KAN-AD, replacing B-splines with truncated Fourier expansions and introducing a novel lightweight learning mechanism.
- Score: 20.42387034910592
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series anomaly detection (TSAD) underpins real-time monitoring in cloud services and web systems, allowing rapid identification of anomalies to prevent costly failures. Most TSAD methods driven by forecasting models tend to overfit by emphasizing minor fluctuations. Our analysis reveals that effective TSAD should focus on modeling "normal" behavior through smooth local patterns. To achieve this, we reformulate time series modeling as approximating the series with smooth univariate functions. The local smoothness of each univariate function ensures that the fitted time series remains resilient against local disturbances. However, a direct KAN implementation proves susceptible to these disturbances due to the inherently localized characteristics of B-spline functions. We thus propose KAN-AD, replacing B-splines with truncated Fourier expansions and introducing a novel lightweight learning mechanism that emphasizes global patterns while staying robust to local disturbances. On four popular TSAD benchmarks, KAN-AD achieves an average 15% improvement in detection accuracy (with peaks exceeding 27%) over state-of-the-art baselines. Remarkably, it requires fewer than 1,000 trainable parameters, resulting in a 50% faster inference speed compared to the original KAN, demonstrating the approach's efficiency and practical viability.
Related papers
- CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity [0.0]
We introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques.<n>The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN)<n> experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE.
arXiv Detail & Related papers (2025-04-24T20:05:33Z) - A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies.
This paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework.
arXiv Detail & Related papers (2025-02-25T04:34:18Z) - Transformer-Based Bearing Fault Detection using Temporal Decomposition Attention Mechanism [0.40964539027092917]
Bearing fault detection is a critical task in predictive maintenance, where accurate and timely fault identification can prevent costly downtime and equipment damage.<n>Traditional attention mechanisms in Transformer neural networks often struggle to capture the complex temporal patterns in bearing vibration data, leading to suboptimal performance.<n>We propose a novel attention mechanism, Temporal Decomposition Attention (TDA), which combines temporal bias encoding with seasonal-trend decomposition to capture both long-term dependencies and periodic fluctuations in time series data.
arXiv Detail & Related papers (2024-12-15T16:51:31Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
Variational Autoencoders (VAEs) have gained popularity in recent decades due to their superior de-noising capabilities.
FCVAE exploits an innovative approach to concurrently integrate both the global and local frequency features into the condition of Conditional Variational Autoencoder (CVAE)
Our approach has been evaluated on public datasets and a large-scale cloud system, and the results demonstrate that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T09:06:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
We propose a multi-normal-pattern accommodated anomaly detection method in the frequency domain for time series anomaly detection.
There are three novel characteristics of it: (i) a pattern extraction mechanism excelling at handling diverse normal patterns with a unified model; (ii) a dualistic convolution mechanism that amplifies short-term anomalies in the time domain and hinders the reconstruction of anomalies in the frequency domain; and (iii) leveraging the sparsity and parallelism of frequency domain to enhance model efficiency.
arXiv Detail & Related papers (2023-11-26T03:31:43Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranAD is a deep transformer network based anomaly detection and diagnosis model.
It uses attention-based sequence encoders to swiftly perform inference with the knowledge of the broader temporal trends in the data.
TranAD can outperform state-of-the-art baseline methods in detection and diagnosis performance with data and time-efficient training.
arXiv Detail & Related papers (2022-01-18T19:41:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.