GAFusion: Adaptive Fusing LiDAR and Camera with Multiple Guidance for 3D Object Detection
- URL: http://arxiv.org/abs/2411.00340v1
- Date: Fri, 01 Nov 2024 03:40:24 GMT
- Title: GAFusion: Adaptive Fusing LiDAR and Camera with Multiple Guidance for 3D Object Detection
- Authors: Xiaotian Li, Baojie Fan, Jiandong Tian, Huijie Fan,
- Abstract summary: We propose a novel multi-modality 3D objection detection method, named GAFusion, with LiDAR-guided global interaction and adaptive fusion.
GAFusion achieves state-of-the-art 3D object detection results with 73.6$%$ mAP and 74.9$%$ NDS on the nuScenes test set.
- Score: 36.37236815038332
- License:
- Abstract: Recent years have witnessed the remarkable progress of 3D multi-modality object detection methods based on the Bird's-Eye-View (BEV) perspective. However, most of them overlook the complementary interaction and guidance between LiDAR and camera. In this work, we propose a novel multi-modality 3D objection detection method, named GAFusion, with LiDAR-guided global interaction and adaptive fusion. Specifically, we introduce sparse depth guidance (SDG) and LiDAR occupancy guidance (LOG) to generate 3D features with sufficient depth information. In the following, LiDAR-guided adaptive fusion transformer (LGAFT) is developed to adaptively enhance the interaction of different modal BEV features from a global perspective. Meanwhile, additional downsampling with sparse height compression and multi-scale dual-path transformer (MSDPT) are designed to enlarge the receptive fields of different modal features. Finally, a temporal fusion module is introduced to aggregate features from previous frames. GAFusion achieves state-of-the-art 3D object detection results with 73.6$\%$ mAP and 74.9$\%$ NDS on the nuScenes test set.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal
Consistent Transformer for 3D Object Detection [14.457844173630667]
We propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer.
By developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously.
Our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.
arXiv Detail & Related papers (2023-09-11T06:27:25Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.