The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation
- URL: http://arxiv.org/abs/2411.00843v2
- Date: Fri, 14 Feb 2025 18:35:03 GMT
- Title: The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation
- Authors: Reza Moravej, Saurabh Bodhe, Zhanguang Zhang, Didier Chetelat, Dimitrios Tsaras, Yingxue Zhang, Hui-Ling Zhen, Jianye Hao, Mingxuan Yuan,
- Abstract summary: This work proposes augmenting large language models (LLMs) with predictor networks trained to estimate circuit quality directly from HDL code.
To enhance performance, the model is regularized using embeddings from graph neural networks (GNNs) trained on Look-Up Table (LUT) graphs.
The proposed method demonstrates superior performance compared to existing graph-based RTL-level estimation techniques on the established benchmark OpenABCD.
- Score: 34.37154877681809
- License:
- Abstract: Logic synthesis is a crucial phase in the circuit design process, responsible for transforming hardware description language (HDL) designs into optimized netlists. However, traditional logic synthesis methods are computationally intensive, restricting their iterative use in refining chip designs. Recent advancements in large language models (LLMs), particularly those fine-tuned on programming languages, present a promising alternative. This work proposes augmenting LLMs with predictor networks trained to estimate circuit quality directly from HDL code. To enhance performance, the model is regularized using embeddings from graph neural networks (GNNs) trained on Look-Up Table (LUT) graphs, thereby incorporating lower-level circuit insights. The proposed method demonstrates superior performance compared to existing graph-based RTL-level estimation techniques on the established benchmark OpenABCD, while providing instant feedback on HDL code quality.
Related papers
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
Large language models (LLMs) can be employed for programming languages such as Python and C++.
This paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design.
arXiv Detail & Related papers (2025-02-19T17:53:59Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)
LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - Are LLMs Any Good for High-Level Synthesis? [1.3927943269211591]
Large Language Models (LLMs) can streamline or replace the High-Level Synthesis (HLS) process.
LLMs can understand natural language specifications and translate C code or natural language specifications.
This study aims to illuminate the role of LLMs in HLS, identifying promising directions for optimized hardware design in applications such as AI acceleration, embedded systems, and high-performance computing.
arXiv Detail & Related papers (2024-08-19T21:40:28Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
State-of-the-art logic synthesis algorithms have a large number of logic minimizations.
INVICTUS generates a sequence of logic minimizations based on a training dataset of previously seen designs.
arXiv Detail & Related papers (2023-05-22T15:50:42Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction [22.974348682859322]
We propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features.
By combining the learned embedding on top of the netlist with the GNNs, our method improves prediction performance, generalizes to new circuit lines, and is efficient in training, potentially saving over $90 %$ of runtime.
arXiv Detail & Related papers (2021-11-10T20:56:29Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
We propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications.
We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
arXiv Detail & Related papers (2019-12-27T21:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.