Evolution Dynamics Toward the Limit Cycle of a Quantum Self-Sustained Oscillator
- URL: http://arxiv.org/abs/2406.12337v2
- Date: Wed, 26 Jun 2024 08:24:03 GMT
- Title: Evolution Dynamics Toward the Limit Cycle of a Quantum Self-Sustained Oscillator
- Authors: Hendry M. Lim, Donny Dwiputra, M Shoufie Ukhtary, Ahmad R. T. Nugraha,
- Abstract summary: We investigate the evolution of a quantum Rayleigh-van der Pol (RvdP) oscillator with a quasiharmonic limit cycle.
One evolution toward the limit cycle may take much longer than another and a least-time parameter may be present.
We describe the resulting dynamics in terms of the coherence decay and the redistribution of eigenstate occupation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamics of a quantum self-sustained oscillator as it evolves toward its limit cycle may be useful in solving related problems like those in quantum synchronization, yet is inadequately studied. Here we investigate the evolution of a quantum Rayleigh-van der Pol (RvdP) oscillator, the simplest form of a self-sustained oscillator exhibiting a quasiharmonic limit cycle, starting from Fock, thermal, and coherent states. We find that the phase-space dynamics significantly differ depending on the initial state -- one evolution toward the limit cycle may take much longer than another and a least-time parameter may be present. We describe the resulting dynamics in terms of the coherence decay and the redistribution of eigenstate occupation.
Related papers
- Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system [0.0]
We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
arXiv Detail & Related papers (2024-11-01T22:17:24Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Orbit quantization in a retarded harmonic oscillator [0.0]
We analytically predict the value of the first Hopf bifurcation, unleashing a self-oscillatory motion.
When the system is driven very far from equilibrium, a multiscale strange attractor displaying intrinsic and robust intermittency is uncovered.
arXiv Detail & Related papers (2023-01-25T04:47:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum trajectories of dissipative time-crystals [0.0]
We show that the photon count signal as well as the homodyne current allow to identify and characterize critical behavior at the time-crystal phase transition.
The average time between these fluctuation events shows a power-law scaling with system size.
We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter.
arXiv Detail & Related papers (2022-12-13T10:20:00Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.