論文の概要: Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
- arxiv url: http://arxiv.org/abs/2411.01251v2
- Date: Mon, 20 Jan 2025 10:48:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:18.923251
- Title: Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
- Title(参考訳): CNNモデルによる糖尿病網膜症検出の強化:UNETとスタックドUNETアーキテクチャの比較検討
- Authors: Ameya Uppina, S Navaneetha Krishnan, Talluri Krishna Sai Teja, Nikhil N Iyer, Joe Dhanith P R,
- Abstract要約: 糖尿病網膜症DRは糖尿病の重篤な合併症である。損傷または異常な血管は視力喪失を引き起こす可能性がある。
糖尿病患者の大量スクリーニングの必要性は、コンピュータ支援によるDRの完全自動診断への関心を生んでいる。
ディープラーニングフレームワーク、特に畳み込みニューラルネットワークCNNは、網膜画像を分析してDRを検出することに非常に興味を持ち、約束している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision. The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR. In the realm of Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images. However, several challenges have been faced in the application of deep learning in this domain. High-quality, annotated datasets are scarce, and the variations in image quality and class imbalances pose significant hurdles in developing a dependable model. In this paper, we demonstrate the proficiency of two Convolutional Neural Networks CNNs based models, UNET and Stacked UNET utilizing the APTOS Asia Pacific Tele-Ophthalmology Society Dataset. This system achieves an accuracy of 92.81% for the UNET and 93.32% for the stacked UNET architecture. The architecture classifies the images into five categories ranging from 0 to 4, where 0 is no DR and 4 is proliferative DR.
- Abstract(参考訳): 糖尿病網膜症DRは糖尿病の重篤な合併症である。
損傷または異常な血管は視力を失うことがある。
糖尿病患者の大量スクリーニングの必要性は、DRのコンピュータ支援による完全自動診断への関心を引き起こしている。ディープラーニングフレームワーク、特に畳み込みニューラルネットワークCNNの領域では、網膜画像を分析してDRを検出することに大きな関心と約束が示されている。
しかし、この領域でのディープラーニングの適用において、いくつかの課題に直面している。
高品質で注釈付きデータセットは乏しく、画像の品質とクラス不均衡の変化は、信頼性のあるモデルを開発する上で大きなハードルとなる。
本稿では,APTOS Asia Pacific Tele-Ophthalmology Society Dataset を利用した2つの畳み込みニューラルネットワーク CNN モデル UNET と Stacked UNET の有効性を示す。
このシステムは、UNETの92.81%、積み重ねたUNETアーキテクチャの93.32%の精度を達成する。
このアーキテクチャは、画像を0から4までの5つのカテゴリに分類する。
関連論文リスト
- Classification of Diabetic Retinopathy using Pre-Trained Deep Learning Models [0.0]
糖尿病網膜症(DR)は、特に20歳から70歳までの人の視覚障害の主要な原因である。
本稿では,正常,軽度,中等度,重症,増殖性糖尿病網膜症(PDR)の5つの分類に分類するコンピュータ支援診断システムを提案する。
論文 参考訳(メタデータ) (2024-03-29T01:11:56Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
糖尿病網膜症解析チャレンジ(DRAC)2022から得られる糖尿病網膜症(DR)画像を自動的に評価するアンサンブル法を提案する。
まず、最先端の分類ネットワークを採用し、利用可能なデータセットの異なる分割でUW-OCTA画像のグレードをトレーニングする。
最終的に、25のモデルを取得し、そのうち上位16のモデルを選択し、アンサンブルして最終的な予測を生成する。
論文 参考訳(メタデータ) (2022-12-12T22:06:47Z) - Diabetic Retinopathy Screening Using Custom-Designed Convolutional
Neural Network [1.3069410690405037]
糖尿病網膜症(DR)の流行は世界中で34.6%に達し、中年糖尿病患者の視覚障害の主要な原因となっている。
眼底写真を用いた通常のDRスクリーニングは、合併症を検知し、高度なレベルへの進行を防ぐのに役立つ。
既存のCNNベースの手法では、トレーニング済みのCNNモデルか、新しいCNNモデルを設計するためのブルートフォースアプローチのいずれかを使用している。
論文 参考訳(メタデータ) (2021-10-08T03:30:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Predictive Analysis of Diabetic Retinopathy with Transfer Learning [0.0]
本稿では,糖尿病網膜症分類のためのCNNアーキテクチャの性能をトランスファーラーニングの助けを借りて検討する。
その結果,VGG 16モデルを用いた画像ネット重み付きトランスファー学習は,95%の精度で最高の分類性能を示した。
論文 参考訳(メタデータ) (2020-11-08T18:54:57Z) - Conversion and Implementation of State-of-the-Art Deep Learning
Algorithms for the Classification of Diabetic Retinopathy [0.0]
Inception-V3, VGG19, VGG16, ResNet50, InceptionResNetV2を実験により評価した。
彼らは、DR重度に基づいて、医療画像を5つの異なるクラスに分類する。
実験の結果、ResNet50はバイナリ分類の最高性能を示している。
論文 参考訳(メタデータ) (2020-10-07T20:42:14Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading [75.73437831338907]
糖尿病網膜症(DR)は、世界中の視覚障害の主要な原因である。
診断を助けるために、多くの最先端の作業が強力なディープニューラルネットワーク(DNN)を構築し、網膜基底画像(RFI)を介してDRを自動的にグレードする。
RFIは一般的に、不正グレードにつながる可能性のあるカメラ露出の問題によって影響を受ける。
本稿では,敵攻撃の観点からこの問題を考察する。
論文 参考訳(メタデータ) (2020-09-19T13:47:33Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。