論文の概要: WaKA: Data Attribution using K-Nearest Neighbors and Membership Privacy Principles
- arxiv url: http://arxiv.org/abs/2411.01357v2
- Date: Sun, 01 Dec 2024 16:18:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:12.004451
- Title: WaKA: Data Attribution using K-Nearest Neighbors and Membership Privacy Principles
- Title(参考訳): WaKA: K-Nearest Neighborsとメンバシッププライバシ原則によるデータ属性
- Authors: Patrick Mesana, Clément Bénesse, Hadrien Lautraite, Gilles Caporossi, Sébastien Gambs,
- Abstract要約: WaKAは、個々のデータポイントのモデル損失分布への寄与を測定する新しい属性法である。
WaKAは汎用的であり、プライバシーリスクを評価するために、MIA(メンバシップ推論攻撃)として後部攻撃として使用できる。
不均衡なデータセット上でのデータ最小化タスク(削除や追加)において、WAKAはShapley Valuesよりも堅牢性が高いことを示す。
- 参考スコア(独自算出の注目度): 3.437769176989657
- License:
- Abstract: In this paper, we introduce WaKA (Wasserstein K-nearest-neighbors Attribution), a novel attribution method that leverages principles from the LiRA (Likelihood Ratio Attack) framework and k-nearest neighbors classifiers (k-NN). WaKA efficiently measures the contribution of individual data points to the model's loss distribution, analyzing every possible k-NN that can be constructed using the training set, without requiring to sample subsets of the training set. WaKA is versatile and can be used a posteriori as a membership inference attack (MIA) to assess privacy risks or a priori for privacy influence measurement and data valuation. Thus, WaKA can be seen as bridging the gap between data attribution and membership inference attack (MIA) by providing a unified framework to distinguish between a data point's value and its privacy risk. For instance, we have shown that self-attribution values are more strongly correlated with the attack success rate than the contribution of a point to the model generalization. WaKA's different usage were also evaluated across diverse real-world datasets, demonstrating performance very close to LiRA when used as an MIA on k-NN classifiers, but with greater computational efficiency. Additionally, WaKA shows greater robustness than Shapley Values for data minimization tasks (removal or addition) on imbalanced datasets.
- Abstract(参考訳): 本稿では、LiRA(Likelihood Ratio Attack)フレームワークとk-nearest neighbors Classifiers(k-NN)の原理を利用する新しい属性手法であるWaKA(Wasserstein K-nearest-neighbors Attribution)を紹介する。
WaKAは、トレーニングセットのサブセットをサンプリングすることなく、トレーニングセットを使用して構築できるあらゆる可能なk-NNを分析し、モデルの損失分布に対する個々のデータポイントの寄与を効率的に測定する。
WaKAは汎用的であり、プライバシのリスク評価や、プライバシの影響測定とデータ評価の優先順位を評価するために、メンバシップ推論アタック(MIA)として後部構造を使用することができる。
このように、WaKAはデータポイントの価値とプライバシリスクを区別する統一されたフレームワークを提供することによって、データ属性とメンバシップ推論攻撃(MIA)のギャップを埋めると見なすことができる。
例えば、モデル一般化へのポイントの寄与よりも、自己帰属値は攻撃成功率と強く相関していることが示されている。
WaKAの異なる使用法は、様々な実世界のデータセットで評価され、k-NN分類器上でMIAとして使用される場合、LiRAに非常に近い性能を示したが、計算効率は向上した。
さらに、WaKAは、不均衡なデータセット上でのデータ最小化タスク(削除または追加)に対して、Shapley Valuesよりも堅牢性が高い。
関連論文リスト
- Data-Efficient Pretraining with Group-Level Data Influence Modeling [49.18903821780051]
グループレベルデータ影響モデリング(Group-MATES)は、新しいデータ効率事前学習手法である。
Group-MATESは、事前学習モデルをデータセットで局所的に探索することで、オラクルグループレベルの影響を収集する。
その後、関係データの影響モデルを微調整し、個々の影響の相関重み付けとしてオラクルを近似する。
論文 参考訳(メタデータ) (2025-02-20T16:34:46Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods [56.073335779595475]
ReCaLL (Relative Conditional Log-Likelihood) という新しいメンバーシップ推論攻撃(MIA)を提案する。
ReCaLLは、ターゲットデータポイントを非メンバーコンテキストでプレフィックスする場合、条件付きログライクな状態の相対的変化を調べる。
我々は総合的な実験を行い、ReCaLLがWikiMIAデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-06-23T00:23:13Z) - Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning [8.808963973962278]
クラスごとの例やクラスの数など、プライバシの脆弱性とデータセットプロパティの関係を分析します。
シャドーモデルから算出したスコア分布と統計量から,MIA単位の脆弱性を導出する。
論文 参考訳(メタデータ) (2024-02-07T14:23:01Z) - BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model [8.19957400564017]
分散ノードにデータを格納し、モデルパラメータのみを共有するフェデレーション学習は、この問題に対処するために大きな注目を集めている。
悪質なローカルモデルが集約中のグローバルモデルのパフォーマンスを損なうという、ビザンティン攻撃問題(英語版)によるフェデレートラーニング(英語版)において、課題が生じる。
本稿では、フェデレートラーニングとブロックチェーン技術を組み合わせたByzantine-Robust Federated Learning(BRLF)モデルの統合を提案する。
論文 参考訳(メタデータ) (2023-10-20T10:21:50Z) - Generalizing Differentially Private Decentralized Deep Learning with Multi-Agent Consensus [11.414398732656839]
本稿では,分散ディープラーニングに差分プライバシーを組み込んだフレームワークを提案する。
本稿では,このフレームワークから派生したアルゴリズムの収束保証を証明し,その実用性を示す。
論文 参考訳(メタデータ) (2023-06-24T07:46:00Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Unlearning Protected User Attributes in Recommendations with Adversarial
Training [10.268369743620159]
協調フィルタリングアルゴリズムは、特定の人口統計やユーザーの保護された情報を含む、基礎となる消費パターンをキャプチャする。
これらの符号化バイアスは、様々な階層のサブグループに提供されるコンテンツのさらなる分離に向けたレコメンデーションシステムの決定に影響を与える可能性がある。
本研究では,RSアルゴリズムの学習的相互作用表現から,ユーザの特定の保護された情報を除去する可能性と課題について検討する。
論文 参考訳(メタデータ) (2022-06-09T13:36:28Z) - SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for
Machine Learning [13.952586561595473]
機械学習(ML)モデルのトレーニングに使用されるデータは、センシティブである。
メンバーシップ推論攻撃(MIA)は、特定のデータレコードがMLモデルのトレーニングに使用されたかどうかを判断し、メンバーシップのプライバシを侵害するリスクを負う。
本稿では,Shapley値を用いて個別のトレーニングデータ記録の記憶を定量化するSHAPrを提案する。
論文 参考訳(メタデータ) (2021-12-04T03:45:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。