Use Digital Twins to Support Fault Diagnosis From System-level Condition-monitoring Data
- URL: http://arxiv.org/abs/2411.01360v1
- Date: Sat, 02 Nov 2024 20:35:13 GMT
- Title: Use Digital Twins to Support Fault Diagnosis From System-level Condition-monitoring Data
- Authors: Killian Mc Court, Xavier Mc Court, Shijia Du, Zhiguo Zeng,
- Abstract summary: We propose to use a digital twin to support developing data-driven fault diagnosis model.
The proposed framework is evaluated on a real-world robot system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning models have created great opportunities for data-driven fault diagnosis but they require large amount of labeled failure data for training. In this paper, we propose to use a digital twin to support developing data-driven fault diagnosis model to reduce the amount of failure data used in the training process. The developed fault diagnosis models are also able to diagnose component-level failures based on system-level condition-monitoring data. The proposed framework is evaluated on a real-world robot system. The results showed that the deep learning model trained by digital twins is able to diagnose the locations and modes of 9 faults/failure from $4$ different motors. However, the performance of the model trained by a digital twin can still be improved, especially when the digital twin model has some discrepancy with the real system.
Related papers
- A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset [1.148237645450678]
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment.
Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL) and hybrid architectures for BRB faults.
This paper implements large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data.
arXiv Detail & Related papers (2025-01-07T12:40:11Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids [4.616703548353371]
Fault diagnosis in cyber-physical power systems is affected by data quality.
These systems generate massive amounts of data that overburden the system with excessive computational costs.
This paper presents the effect of feature engineering on mitigating the aforementioned challenges.
arXiv Detail & Related papers (2023-03-15T01:21:50Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Deep Learning and Handheld Augmented Reality Based System for Optimal
Data Collection in Fault Diagnostics Domain [0.0]
This paper presents a novel human-machine interaction framework to perform fault diagnostics with minimal data.
Minimizing the required data will increase the practicability of data-driven models in diagnosing faults.
The proposed framework has provided above 100% precision and recall on a novel dataset with only one instance of each fault condition.
arXiv Detail & Related papers (2022-06-15T19:15:26Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Quick Learning Mechanism with Cross-Domain Adaptation for Intelligent
Fault Diagnosis [11.427019313283997]
This paper presents a quick learning mechanism for intelligent fault diagnosis of rotating machines operating under changeable working conditions.
We propose a quick learning method with Net2Net transformation followed by a fine-tuning method to cancel/minimize the maximum mean discrepancy of the new data to the previous one.
The effectiveness of the proposed fault diagnosis method has been demonstrated on the CWRU dataset, IMS bearing dataset, and Paderborn university dataset.
arXiv Detail & Related papers (2021-03-16T07:24:37Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results.
An automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks.
Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.
arXiv Detail & Related papers (2020-08-11T11:59:48Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.