論文の概要: Enhancing Glucose Level Prediction of ICU Patients through Irregular Time-Series Analysis and Integrated Representation
- arxiv url: http://arxiv.org/abs/2411.01418v1
- Date: Sun, 03 Nov 2024 03:03:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:04.239227
- Title: Enhancing Glucose Level Prediction of ICU Patients through Irregular Time-Series Analysis and Integrated Representation
- Title(参考訳): 不規則時系列解析と統合表現によるICU患者の血糖レベルの予測
- Authors: Hadi Mehdizavareh, Arijit Khan, Simon Lebech Cichosz,
- Abstract要約: 我々は,次のレベルを予測するための新しい学習モデルを開発し,低血糖,高血糖,高血糖に分類した。
本研究はICU患者における血糖値の予測に焦点をあてるが、MITSTは他の重要な事象予測タスクにも容易に拡張できる。
- 参考スコア(独自算出の注目度): 4.101915841246237
- License:
- Abstract: Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. We develop the Multi-source Irregular Time-Series Transformer (MITST), a novel machine learning-based model to forecast the next BG level, classifying it into hypoglycemia, hyperglycemia, or euglycemia (70-180 mg/dL). The irregularity and complexity of Electronic Health Record (EHR) data, spanning multiple heterogeneous clinical sources like lab results, medications, and vital signs, pose significant challenges for prediction tasks. MITST addresses these using hierarchical Transformer architectures, which include a feature-level, a timestamp-level, and a source-level Transformer. This design captures fine-grained temporal dynamics and allows learning-based data integration instead of traditional predefined aggregation. In a large-scale evaluation using the eICU database (200,859 ICU stays across 208 hospitals), MITST achieves an average improvement of 1.7% (p < 0.001) in AUROC and 1.8% (p < 0.001) in AUPRC over a state-of-the-art baseline. For hypoglycemia, MITST achieves an AUROC of 0.915 and an AUPRC of 0.247, both significantly higher than the baseline's AUROC of 0.862 and AUPRC of 0.208 (p < 0.001). The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability in clinical decision support. Although this study focuses on predicting BG levels, MITST can easily be extended to other critical event prediction tasks in ICU settings, offering a robust solution for analyzing complex, multi-source, irregular time-series data.
- Abstract(参考訳): 低血糖 (BG < 70 mg/dL) と高血糖 (BG > 180 mg/dL) の両方が死亡率と死亡率の増加と関連しているため、ICU患者の血糖 (BG) の正確な予測は極めて重要である。
我々は,次のBGレベルを予測する機械学習モデルであるMulti-source Irregular Time-Series Transformer (MITST)を開発した。
EHR(Electronic Health Record)データの不規則さと複雑さは、検査結果、医薬品、バイタルサインなど、複数の異種臨床ソースにまたがり、予測タスクに重大な課題を提起している。
MITSTは、特徴レベル、タイムスタンプレベル、ソースレベルのトランスフォーマーを含む階層トランスフォーマーアーキテクチャを使用してこれらに対処する。
この設計は、きめ細かい時間的ダイナミクスをキャプチャし、従来の事前定義されたアグリゲーションの代わりに学習ベースのデータ統合を可能にする。
eICUデータベース(200,859 ICUは208の病院に留まる)を用いた大規模な評価では、MITSTはAUROCで1.7%(p < 0.001)、AUPRCで1.8%(p < 0.001)の改善を達成している。
低血糖では、MITSTはAUROCが0.915、AUPRCが0.247であり、どちらもベースラインのAUROCが0.862、AUPRCが0.208(p < 0.001)より有意に高い。
MITSTの柔軟なアーキテクチャは、モデル全体をトレーニングすることなく、新しいデータソースのシームレスな統合を可能にし、臨床決定支援への適応性を高める。
この研究はBGレベルの予測に重点を置いているが、MITSTはICU設定における他の重要な事象予測タスクに容易に拡張することができ、複雑な、複数ソース、不規則な時系列データを解析するための堅牢なソリューションを提供する。
関連論文リスト
- DeLLiriuM: A large language model for delirium prediction in the ICU using structured EHR [1.4699314771635081]
デリリウムは急性の混乱状態であり、集中治療室(ICU)の31%の患者に影響を及ぼすことが示されている。
3大データベースにわたる195病院のICU入院患者104,303名を対象にDeLLiriuMの開発と評価を行った。
論文 参考訳(メタデータ) (2024-10-22T18:56:31Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Contrastive Learning Improves Critical Event Prediction in COVID-19
Patients [19.419685256069666]
対照的損失 (CL) は非平衡 EHR データに対するクロスエントロピー損失 (CEL) の性能を改善することを示した。
この研究は、シナイ山にあるIcahn School of MedicineのInstitutional Review Boardによって承認されています。
論文 参考訳(メタデータ) (2021-01-11T16:41:13Z) - All Data Inclusive, Deep Learning Models to Predict Critical Events in
the Medical Information Mart for Intensive Care III Database (MIMIC III) [0.0]
本研究は35,348人を対象に42,818人の入院患者を対象に行った。
複数のデータソースにわたる7500万以上のイベントが処理され、3億5500万以上のトークンが処理された。
すべてのデータソースを使用して構築されたモデルから、はるかに信頼性が高く、信頼性の高いホスピタル死亡を予測できる。
論文 参考訳(メタデータ) (2020-09-02T22:12:18Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。