論文の概要: SPARC: Spectral Architectures Tackling the Cold-Start Problem in Graph Learning
- arxiv url: http://arxiv.org/abs/2411.01532v2
- Date: Tue, 18 Feb 2025 12:27:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:24.401947
- Title: SPARC: Spectral Architectures Tackling the Cold-Start Problem in Graph Learning
- Title(参考訳): SPARC: グラフ学習におけるコールドスタート問題に取り組むスペクトルアーキテクチャ
- Authors: Yahel Jacobs, Reut Dayan, Uri Shaham,
- Abstract要約: データ内の複雑な関係をモデル化する上で、グラフは中心的な役割を果たす。
ほとんどのグラフ学習手法は、コールドスタートノードに直面するとフェールする。
本稿では、一般化可能なスペクトル埋め込みを利用して、グラフ学習に新しいアプローチを導入する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.870455775654713
- License:
- Abstract: Graphs play a central role in modeling complex relationships in data, yet most graph learning methods falter when faced with cold-start nodes--new nodes lacking initial connections--due to their reliance on adjacency information. To tackle this, we propose SPARC, a groundbreaking framework that introduces a novel approach to graph learning by utilizing generalizable spectral embeddings. With a simple yet powerful enhancement, SPARC empowers state-of-the-art methods to make predictions on cold-start nodes effectively. By eliminating the need for adjacency information during inference and effectively capturing the graph's structure, we make these methods suitable for real-world scenarios where new nodes frequently appear. Experimental results demonstrate that our framework outperforms existing models on cold-start nodes across tasks such as node classification, node clustering, and link prediction. SPARC provides a solution to the cold-start problem, advancing the field of graph learning.
- Abstract(参考訳): グラフは、データ内の複雑な関係をモデル化する上で中心的な役割を果たすが、ほとんどのグラフ学習手法は、コールドスタートノードに直面するとフェールする。
これを解決するために,一般化可能なスペクトル埋め込みを利用してグラフ学習に新たなアプローチを導入する基盤となるフレームワークであるSPARCを提案する。
シンプルだが強力な拡張により、SPARCはコールドスタートノードの予測を効果的に行う最先端の手法をパワーアップする。
推論中の隣接情報を排除し,グラフの構造を効果的に把握することにより,新たなノードが頻繁に出現する現実世界のシナリオに適した手法を提案する。
実験の結果,本フレームワークはノード分類,ノードクラスタリング,リンク予測といったタスクにおいて,コールドスタートノードの既存モデルよりも優れていた。
SPARCはコールドスタート問題の解決策を提供し、グラフ学習の分野を前進させる。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
グラフニューラルネットワーク(GNN)は、構造情報を符号化するための有望な技術として登場した。
主な課題は、異なる性質を持つグラフデータを一般化することの難しさである。
この課題に対処するために,OpenGraphと呼ばれる新しいグラフ基盤モデルを提案する。
論文 参考訳(メタデータ) (2024-03-02T08:05:03Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Cold Brew: Distilling Graph Node Representations with Incomplete or
Missing Neighborhoods [69.13371028670153]
本稿では,SCS(Strict Cold Start)問題に対する誘導型GNNの有効性を検討するために,FCR(Feature-Contribution ratio)を導入する。
実験により,FCRはグラフデータセットの様々な成分の寄与を阻害し,コールドブリューの優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-08T21:29:25Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Schema-Aware Deep Graph Convolutional Networks for Heterogeneous Graphs [10.526065883783899]
グラフ畳み込みネットワーク(GCN)に基づくアプローチは、複雑でグラフ構造化された問題を解決するために大きな進歩を遂げた。
我々はGCNフレームワーク「深部不均一グラフ畳み込みネットワーク(DHGCN)」を提案する。
それは異種グラフのスキーマを利用し、多くのホップを効果的に活用するために階層的アプローチを使用します。
論文 参考訳(メタデータ) (2021-05-03T06:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。