論文の概要: Symmetry Adapted Residual Neural Network Diabatization: Conical Intersections in Aniline Photodissociation
- arxiv url: http://arxiv.org/abs/2411.01702v1
- Date: Sun, 03 Nov 2024 21:56:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:41.589653
- Title: Symmetry Adapted Residual Neural Network Diabatization: Conical Intersections in Aniline Photodissociation
- Title(参考訳): 対称性に適応した残留ニューラルネットワークのダイアバタイズ:アニリン光解離における円錐断面
- Authors: Yifan Shen, David Yarkony,
- Abstract要約: 準双曲型ハミルトニアンを構成するために,対称性適応型ニューラルネットワーク (SAResNet) のダイアバタイズ手法を提案する。
我々のSAResNetはアニリンN-H結合光解離のための36次元結合ダイアバティックポテンシャル表面の構築に応用されている。
- 参考スコア(独自算出の注目度): 1.2365038403958204
- License:
- Abstract: We present a symmetry adapted residual neural network (SAResNet) diabatization method to construct quasi-diabatic Hamiltonians that accurately represent ab initio adiabatic energies, energy gradients, and nonadiabatic couplings for moderate sized systems. Our symmetry adapted neural network inherits from the pioneering symmetry adapted polynomial and fundamental invariant neural network diabatization methods to exploit the power of neural network along with the transparent symmetry adaptation of polynomial for both symmetric and asymmetric irreducible representations. In addition, our symmetry adaptation provides a unified framework for symmetry adapted polynomial and symmetry adapted neural network, enabling the adoption of the residual neural network architecture, which is a powerful descendant of the pioneering feedforward neural network. Our SAResNet is applied to construct the full 36-dimensional coupled diabatic potential energy surfaces for aniline N-H bond photodissociation, with 2,269 data points and 32,640 trainable parameters and 190 cm-1 root mean square deviation in energy. In addition to the experimentally observed {\pi}{\pi}* and {\pi}Rydberg/{\pi}{\sigma}* states, a higher state (HOMO - 1 {\pi} to Rydberg/{\sigma}* excitation) is found to introduce an induced geometric phase effect thus indirectly participate in the photodissociation process.
- Abstract(参考訳): そこで本研究では, 準断熱ハミルトニアンを構成する対称性適応残差ニューラルネットワーク (SAResNet) のダイアバタイズ手法を提案する。
我々の対称性適応型ニューラルネットワークは、先駆的な対称性適応多項式と基本不変のニューラルネットワークダイアバタイズ法を継承し、対称性および非対称既約表現に対する多項式の透過対称性適応とともにニューラルネットワークのパワーを利用する。
さらに、我々の対称性適応は、対称性適応多項式と対称性適応ニューラルネットワークの統一的な枠組みを提供し、先駆的なフィードフォワードニューラルネットワークの強力な子孫である残留ニューラルネットワークアーキテクチャの採用を可能にする。
アニリンN-H結合光解離のための全36次元結合ダイアバティックポテンシャル表面の構築にSAResNetを適用し,2,269個のデータポイントと32,640個のトレーニング可能なパラメータと190 cm-1の根平均2乗偏差について検討した。
実験的に観察された {\pi}{\pi}* と {\pi}Rydberg/{\pi}{\sigma}* 状態に加えて、より高い状態 (HOMO - 1 {\pi} to Rydberg/{\sigma}* 励起) が誘導幾何学的位相効果を導入し、光解離過程に間接的に関与する。
関連論文リスト
- The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
ニューラル・ネットワーク・アーキテクチャの導入により,ニューラル・パラメータ・対称性の影響について検討する。
我々は,パラメータ空間対称性を低減するために,標準的なニューラルネットワークを改良する2つの手法を開発した。
実験により,パラメータ対称性の経験的影響に関する興味深い観察がいくつか示された。
論文 参考訳(メタデータ) (2024-05-30T16:32:31Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
本稿では、損失関数を用いて、PINNモデルが基礎となるPDEを強制しようとするのと同じように、リー点対称性をネットワークに通知するロス関数を提案する。
我々の対称性の損失は、リー群の無限小生成元がPDE解を保存することを保証する。
実験により,PDEのリー点対称性による誘導バイアスはPINNの試料効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-11-07T19:07:16Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Improving equilibrium propagation without weight symmetry through Jacobian homeostasis [7.573586022424398]
平衡伝播(EP)は誤りアルゴリズム(BP)のバックプロパゲーションの魅力的な代替手段である
EPは、非バイアス勾配を効率的に推定するために、重量対称性と無限小平衡摂動(nudges)を必要とする。
有限ヌッジはコーシー積分を通しても正確な微分を推定できるので、問題が生じないことが示される。
ネットワークの固定点におけるジャコビアンの関数的非対称性を直接緩和する新たなホメオスタティックな目的を提案する。
論文 参考訳(メタデータ) (2023-09-05T13:20:43Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Encoding Involutory Invariance in Neural Networks [1.6371837018687636]
ある状況では、ニューラルネットワーク(NN)は、基礎となる物理対称性に従うデータに基づいて訓練される。
本研究では、関数がパリティまでのインボリュート線型/ファイン変換に対して不変な特別な対称性について検討する。
数値実験により,提案モデルが与えられた対称性を尊重しながらベースラインネットワークより優れていたことが示唆された。
また,本手法を水平/垂直反射対称性を持つデータセットに対する畳み込みNN分類タスクに適用する手法も提案されている。
論文 参考訳(メタデータ) (2021-06-07T16:07:15Z) - Symmetry-via-Duality: Invariant Neural Network Densities from
Parameter-Space Correlators [0.0]
ネットワーク密度の対称性は、ネットワーク相関関数の二重計算によって決定できる。
初期密度における対称性の量は、Fashion-MNISTで訓練されたネットワークの精度に影響を与えることを示した。
論文 参考訳(メタデータ) (2021-06-01T18:00:06Z) - Finding Symmetry Breaking Order Parameters with Euclidean Neural
Networks [2.735801286587347]
我々は、対称性同変ニューラルネットワークがキュリーの原理を支持し、多くの対称性関連科学的な疑問を単純な最適化問題に表すのに使用できることを示した。
これらの特性を数学的に証明し、ユークリッド対称性同変ニューラルネットワークを訓練し、対称性を破る入力を学習し、正方形を長方形に変形させ、ペロブスカイトのオクタヘドラ傾斜パターンを生成する。
論文 参考訳(メタデータ) (2020-07-04T17:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。