論文の概要: Next Best View For Point-Cloud Model Acquisition: Bayesian Approximation and Uncertainty Analysis
- arxiv url: http://arxiv.org/abs/2411.01734v1
- Date: Mon, 04 Nov 2024 01:32:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:39:46.300805
- Title: Next Best View For Point-Cloud Model Acquisition: Bayesian Approximation and Uncertainty Analysis
- Title(参考訳): ポイントクラウドモデルの次のベストビュー:ベイズ近似と不確実性解析
- Authors: Madalena Caldeira, Plinio Moreno,
- Abstract要約: この研究は、Next-Best-View(PC-NBV)にポイントネットベースのニューラルネットワークを適用する。
モデルアーキテクチャにドロップアウト層を組み込むことで、予測に関連する不確実性推定の計算を可能にする。
本研究の目的は,次の視点を正確に予測することで,ネットワークの精度を向上させることである。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: The Next Best View problem is a computer vision problem widely studied in robotics. To solve it, several methodologies have been proposed over the years. Some, more recently, propose the use of deep learning models. Predictions obtained with the help of deep learning models naturally have some uncertainty associated with them. Despite this, the standard models do not allow for their quantification. However, Bayesian estimation theory contributed to the demonstration that dropout layers allow to estimate prediction uncertainty in neural networks. This work adapts the point-net-based neural network for Next-Best-View (PC-NBV). It incorporates dropout layers into the model's architecture, thus allowing the computation of the uncertainty estimate associated with its predictions. The aim of the work is to improve the network's accuracy in correctly predicting the next best viewpoint, proposing a way to make the 3D reconstruction process more efficient. Two uncertainty measurements capable of reflecting the prediction's error and accuracy, respectively, were obtained. These enabled the reduction of the model's error and the increase in its accuracy from 30\% to 80\% by identifying and disregarding predictions with high values of uncertainty. Another method that directly uses these uncertainty metrics to improve the final prediction was also proposed. However, it showed very residual improvements.
- Abstract(参考訳): 次のベストビュー問題は、ロボット工学で広く研究されているコンピュータビジョンの問題である。
これを解決するために、長年にわたりいくつかの手法が提案されてきた。
最近では、ディープラーニングモデルの使用を提案する者もいます。
ディープラーニングモデルの助けを借りて得られる予測は、自然にそれらに関連する不確実性を持っている。
それにもかかわらず、標準モデルはそれらの定量化を許さない。
しかし、ベイズ推定理論は、ドロップアウト層がニューラルネットワークの予測の不確実性を推定できるという実証に寄与した。
この研究は、Next-Best-View (PC-NBV) にポイントネットベースのニューラルネットワークを適用する。
モデルアーキテクチャにドロップアウト層を組み込むことで、予測に関連する不確実性推定の計算を可能にする。
本研究の目的は, 次の視点を正確に予測し, ネットワークの精度を向上し, 3次元再構成プロセスをより効率的にする方法を提案することである。
予測誤差と精度を反映できる2つの不確実性測定値を得た。
これらの結果から,不確実性の高い予測を識別・無視することで,モデルの誤差の低減と精度の30\%から80\%への向上を実現した。
これらの不確実性指標を直接使用して最終的な予測を改善する方法も提案されている。
しかし、大きな改善が見られた。
関連論文リスト
- Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction [63.3021778885906]
3Dバウンディングボックスは、多くのコンピュータビジョンアプリケーションで広く使われている中間表現である。
本稿では,自己回帰モデルを利用して高い信頼度予測と意味のある不確実性対策を行う手法を提案する。
我々はシミュレーションデータセットであるCOB-3Dをリリースし、現実世界のロボティクスアプリケーションで発生する新しいタイプのあいまいさを強調します。
論文 参考訳(メタデータ) (2022-10-13T23:57:40Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes [0.15229257192293202]
本論文では,これらの手法を予測過程のモニタリングに応用する。
より正確な予測と迅速な作業に貢献できることが分かりました。
これは多くの興味深い応用をもたらし、より小さなデータセットを持つ予測システムを早期に導入し、人間とのより良い協力を促進する。
論文 参考訳(メタデータ) (2021-05-12T10:18:57Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
不確実性の定量化は、安全な機械学習を確立する最も有望なアプローチの1つである。
これまでの最も一般的なアプローチの1つはモンテカルロドロップアウトで、計算量的に安価で、実際に簡単に適用できる。
この問題に対処するため,第2モーメント損失(UCI)と呼ばれる新たな目標を提案する。
論文 参考訳(メタデータ) (2021-01-07T19:12:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。