論文の概要: TabSec: A Collaborative Framework for Novel Insider Threat Detection
- arxiv url: http://arxiv.org/abs/2411.01779v1
- Date: Mon, 04 Nov 2024 04:07:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:45:34.587000
- Title: TabSec: A Collaborative Framework for Novel Insider Threat Detection
- Title(参考訳): TabSec: 新たなインサイダー脅威検出のための協調フレームワーク
- Authors: Zilin Huang, Xiangyan Tang, Hongyu Li, Xinyi Cao, Jieren Cheng,
- Abstract要約: IoT(Internet of Things, モノのインターネット)とデータ共有の時代には、ユーザは自分の個人情報をエンタープライズデータベースに頻繁にアップロードして、サービスエクスペリエンスの向上を享受する。
しかし、システム脆弱性、リモートネットワーク侵入、インサイダーの脅威が広まれば、インターネット上のプライベートエンタープライズデータの露出が著しく増加する。
本稿では,これらの課題に対処する新たな脅威検出フレームワークTabITDを提案する。
- 参考スコア(独自算出の注目度): 8.27921273043059
- License:
- Abstract: In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
- Abstract(参考訳): IoT(Internet of Things)とデータ共有の時代には,さまざまなオンラインサービスが提供する拡張サービスエクスペリエンスを享受するために,ユーザは頻繁に,個人情報をエンタープライズデータベースにアップロードする。
しかし、システム脆弱性、リモートネットワーク侵入、インサイダーの脅威が広まれば、インターネット上のプライベートエンタープライズデータの露出が著しく増加する。
このようなデータが攻撃者によって盗まれたりリークされたりすると、深刻な資産損失とビジネス運用の中断につながる可能性がある。
これらの課題に対処するために,新しい脅威検出フレームワークTabITDを提案する。
このフレームワークは、侵入検知システム(IDS)とユーザ・エンティティ・ビヘイビア・アナリティクス(UEBA)戦略を統合し、既存のシステムの能力のギャップを埋める共同検出システムを形成する。
攻撃手法の多様化による外部と内部の脅威の境界の曖昧さを効果的に解決し、モデルの学習能力と全体的な検出性能を向上させる。
さらに,TabNetアーキテクチャを利用して,各決定ステップで最も関連性の高い機能を選択することで,レアクラスの攻撃の検出を改善する。
提案手法を2つの異なるデータセットで評価し,それぞれ96.71%,97.25%の平均精度を達成した。
提案手法は,マスクレード攻撃や外部脅威などの悪意ある行為を効果的に検出し,ネットワークセキュリティの防御とネットワーク攻撃検出の効率を著しく向上することを示す。
関連論文リスト
- CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
バックドアは、ディープニューラルネットワーク(DNN)上の悪意あるアクターと、データ処理のためのクラウドサービスによって悪用される。
提案手法は高度テンソル分解アルゴリズムを利用して,事前学習したDNNの重みを慎重に解析し,バックドアモデルとクリーンモデルとの区別を行う。
この進歩は、ネットワークシステムにおけるディープラーニングとAIのセキュリティを強化し、新興技術の脅威の進化に対して不可欠なサイバーセキュリティを提供する。
論文 参考訳(メタデータ) (2024-03-13T03:10:11Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
本研究では,グラフ解析手法と改良型グラフ注意畳み込みニューラルネットワーク(GAT)モデルを提案する。
制御フローグラフを分析して、脆弱性の修正を目的とした依存性のアップグレードから発生するアプリケーションの変更をプロファイルします。
結果は、コード脆弱性のリレーショナルダイナミクスに関する微妙な洞察を提供する上で、強化されたGATモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-03-08T02:01:47Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
本稿では,IoT環境に適したネットワーク侵入検知システム(NIDS)の領域におけるオープンセット認識(OSR)問題の緩和を目的としたフレームワークを提案する。
ネットワークトラフィックから空間的・時間的パターンを抽出し,パケットレベルデータのイメージベース表現に重きを置いている。
実験の結果は、このフレームワークの有効性を顕著に強調し、これまで見つからなかった攻撃に対して、驚くべき88%の検知率を誇示している。
論文 参考訳(メタデータ) (2023-09-14T06:41:45Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
過去数十年間、深刻な経済とプライバシーの被害を受けたサイバー攻撃の数が増加している。
本稿では,侵入検知タスクのトポロジ情報の提供を目的とした,フローのグラフとしての新しいネットワーク表現を提案する。
提案するグラフ構造を利用したグラフニューラルネットワーク(GNN)に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-11T16:10:12Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。