論文の概要: LiveIdeaBench: Evaluating LLMs' Divergent Thinking for Scientific Idea Generation with Minimal Context
- arxiv url: http://arxiv.org/abs/2412.17596v3
- Date: Mon, 28 Apr 2025 06:12:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.064636
- Title: LiveIdeaBench: Evaluating LLMs' Divergent Thinking for Scientific Idea Generation with Minimal Context
- Title(参考訳): LiveIdeaBench: 最小コンテキストによる科学的アイデア生成のためのLLMの多様性思考の評価
- Authors: Kai Ruan, Xuan Wang, Jixiang Hong, Peng Wang, Yang Liu, Hao Sun,
- Abstract要約: 我々は,Large Language Modelsの科学的アイデア生成を評価するベンチマークであるLiveIdeaBenchを紹介する。
我々のベンチマークでは、最先端のLCMのダイナミックパネルを用いて、創発性、実現性、流布性、柔軟性、明快さの5つの重要な側面で生成されたアイデアを評価する。
我々の結果は、QwQ-32B-previewのようなモデルが、一般的な知能スコアに大きな差があるにもかかわらず、claude-3.7-sonnet:thinkingのような上位モデルのモデルに匹敵する創造的なパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 13.967898012303325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models (LLMs) demonstrate remarkable capabilities in scientific tasks such as literature analysis and experimental design (e.g., accurately extracting key findings from papers or generating coherent experimental procedures), existing evaluation benchmarks primarily assess performance using rich contextual inputs. We introduce LiveIdeaBench, a comprehensive benchmark evaluating LLMs' scientific idea generation by assessing divergent thinking capabilities using single-keyword prompts. Drawing from Guilford's creativity theory, our benchmark employs a dynamic panel of state-of-the-art LLMs to assess generated ideas across five key dimensions: originality, feasibility, fluency, flexibility, and clarity. Through extensive experimentation with over 40 leading models across 1,180 keywords spanning 22 scientific domains, we reveal that the scientific idea generation capabilities measured by our benchmark, are poorly predicted by standard metrics of general intelligence. Our results demonstrate that models like QwQ-32B-preview achieve creative performance comparable to top-tier models such as claude-3.7-sonnet:thinking, despite significant gaps in their general intelligence scores. These findings highlight the need for specialized evaluation benchmarks for scientific idea generation and suggest that enhancing these idea generation capabilities in LLMs may require different training strategies than those used for improving general problem-solving abilities, potentially enabling a wider range of AI tools tailored for different stages of the scientific process.
- Abstract(参考訳): 大きな言語モデル(LLM)は、文献分析や実験設計(例えば、論文から重要な発見を正確に抽出したり、一貫性のある実験手順を生成する)のような科学的なタスクにおいて顕著な能力を示すが、既存の評価ベンチマークは主にリッチな文脈入力を用いてパフォーマンスを評価する。
LLMの科学的アイデア生成を評価する総合的なベンチマークであるLiveIdeaBenchを紹介する。
Guilford氏のクリエイティビティ理論から引用して、我々のベンチマークでは、最先端のLCMのダイナミックパネルを使用して、生成したアイデアを5つの重要な次元 – 独創性、実現可能性、フレキシビリティ、柔軟性、明確性 – で評価しています。
22の科学領域にまたがる1,180のキーワードを対象とする40以上の主要なモデルによる広範囲な実験により、我々のベンチマークによって測定された科学的アイデア生成能力は、一般知能の標準的な指標によって予測されていないことが判明した。
我々の結果は、QwQ-32B-previewのようなモデルが、一般的な知能スコアに大きな差があるにもかかわらず、claude-3.7-sonnet:thinkingのような上位モデルのモデルに匹敵する創造的なパフォーマンスを達成することを示した。
これらの知見は、科学的アイデア生成のための特別な評価ベンチマークの必要性を強調し、LLMにおけるこれらのアイデア生成能力の強化は、一般的な問題解決能力を改善するために使用されるものとは異なるトレーニング戦略を必要とする可能性があることを示唆している。
関連論文リスト
- Revisiting LLM Evaluation through Mechanism Interpretability: a New Metric and Model Utility Law [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
本稿では,従来の性能指標を補完する機構解釈可能性技術を導入し,モデル利用指標(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Explore Theory of Mind: Program-guided adversarial data generation for theory of mind reasoning [88.68573198200698]
本研究では,多様で挑戦的な心的データ理論を大規模に生成するための最初のフレームワークであるExploreToMを紹介する。
我々のアプローチは、A*検索をカスタムドメイン特化言語に利用して、複雑なストーリ構造と、新しく、多様だが、もっともらしいシナリオを生成します。
評価の結果,Llama-3.1-70B や GPT-4o などの最先端 LLM はExploreToM 生成データに対して0%,9% の精度を示した。
論文 参考訳(メタデータ) (2024-12-12T21:29:00Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - A Novel Psychometrics-Based Approach to Developing Professional Competency Benchmark for Large Language Models [0.0]
本稿では,厳密な心理測定原理に基づくベンチマーク開発への包括的アプローチを提案する。
我々は、教育と教育の分野で新しいベンチマークを作成することで、このアプローチを説明する最初の試みを行う。
我々はブルームの分類学によってガイドされ、テスト開発で訓練された教育専門家のコンソーシアムによって厳格に設計された新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-29T19:32:43Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Can I understand what I create? Self-Knowledge Evaluation of Large Language Models [31.85129258347539]
大規模言語モデル(LLM)は言語タスクにおいて顕著な進歩を遂げた。
フェインマンの創造を通して理解する原理に触発され、自己知識評価フレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-10T09:53:54Z) - Creativity Has Left the Chat: The Price of Debiasing Language Models [1.223779595809275]
大規模言語モデル(LLM)の創造性に対する人間からのフィードバックからの強化学習の意図しない結果について検討する。
我々の発見は、コピーライティング、広告作成、顧客ペルソナ生成といったクリエイティブなタスクにLLMを頼っているマーケターにとって大きな意味を持つ。
論文 参考訳(メタデータ) (2024-06-08T22:14:51Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Divergent Creativity in Humans and Large Language Models [37.67363469600804]
最近の大規模言語モデルの能力の急上昇は、人間の能力に似た創造性レベルに近づいている、という主張につながっている。
我々は、創造科学の最近の進歩を活用して、最先端のLLMと10万人の実質的なデータセットの両方において、多様な創造性を詳細に分析するためのフレームワークを構築します。
論文 参考訳(メタデータ) (2024-05-13T22:37:52Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - Assessing and Understanding Creativity in Large Language Models [33.37237667182931]
本稿では,大規模言語モデル(LLM)における創造性レベルを評価するための効率的な枠組みを確立することを目的とする。
The Torrance Tests of Creative Thinking を用いて、7つのタスクにまたがる様々なLSMの創造的パフォーマンスを評価する。
LLMの創造性は、主に独創性に欠けるが、エラボレーションには優れていた。
論文 参考訳(メタデータ) (2024-01-23T05:19:47Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
我々は、創造性の公式な尺度の定義から、この尺度を実践的な領域に適用することまで、効率的に計算できる旅を行ないます。
我々は、人気のあるビジュアルプログラミング言語であるScratchのプロジェクトに対して、一般的な測度を適用した。
我々は、Scratchプロジェクトの創造性を予測し、人間の専門家による創造性評価に基づいてトレーニングし、評価する機械学習モデルを設計した。
論文 参考訳(メタデータ) (2022-11-07T10:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。