Context-Informed Machine Translation of Manga using Multimodal Large Language Models
- URL: http://arxiv.org/abs/2411.02589v1
- Date: Mon, 04 Nov 2024 20:29:35 GMT
- Title: Context-Informed Machine Translation of Manga using Multimodal Large Language Models
- Authors: Philip Lippmann, Konrad Skublicki, Joshua Tanner, Shonosuke Ishiwatari, Jie Yang,
- Abstract summary: We investigate what extent multimodal large language models (LLMs) can provide effective manga translation.
Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality.
We introduce a new evaluation dataset -- the first parallel Japanese-Polish manga translation dataset.
- Score: 4.063595992745368
- License:
- Abstract: Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset -- the first parallel Japanese-Polish manga translation dataset -- as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.
Related papers
- (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
We introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents.
To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP)
arXiv Detail & Related papers (2024-05-20T05:55:08Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z) - Interactive-Chain-Prompting: Ambiguity Resolution for Crosslingual
Conditional Generation with Interaction [38.73550742775257]
A source query in one language may yield several translation options in another language without any extra context.
We propose a novel method interactive-chain prompting that reduces translations into a list of subproblems addressing ambiguities.
We create a dataset exhibiting different linguistic phenomena which leads to ambiguities at inference for four languages.
arXiv Detail & Related papers (2023-01-24T21:08:13Z) - Improving Multilingual Neural Machine Translation System for Indic
Languages [0.0]
We propose a multilingual neural machine translation (MNMT) system to address the issues related to low-resource language translation.
A state-of-the-art transformer architecture is used to realize the proposed model.
Trials over a good amount of data reveal its superiority over the conventional models.
arXiv Detail & Related papers (2022-09-27T09:51:56Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslate is an online machine translation demonstration system for translation between English and an endangered language Cherokee.
It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability.
arXiv Detail & Related papers (2021-07-30T17:58:54Z) - Towards Fully Automated Manga Translation [8.45043706496877]
We tackle the problem of machine translation of manga, Japanese comics.
obtaining context from the image is essential for manga translation.
First, we propose multimodal context-aware translation framework.
Second, for training the model, we propose the approach to automatic corpus construction from pairs of original manga.
Third, we created a new benchmark to evaluate manga translation.
arXiv Detail & Related papers (2020-12-28T15:20:52Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.