Multipartite entanglement structures in quantum stabilizer states
- URL: http://arxiv.org/abs/2411.02630v2
- Date: Fri, 11 Jul 2025 20:49:53 GMT
- Title: Multipartite entanglement structures in quantum stabilizer states
- Authors: Vaibhav Sharma, Erich J Mueller,
- Abstract summary: We develop a method for visualizing the internal structure of multipartite entanglement in pure stabilizer states.<n>Our algorithm graphically organizes the many-body correlations in a hierarchical structure.<n>Our method also presents an alternative computational tool for extracting the exact entanglement depth and all separable partitions of a stabilizer state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a method for visualizing the internal structure of multipartite entanglement in pure stabilizer states. Our algorithm graphically organizes the many-body correlations in a hierarchical structure. This provides a rich taxonomy from which one can simultaneously extract many quantitative features of a state including some traditional quantities such as entanglement depth, k-uniformity and entanglement entropy. Our method also presents an alternative computational tool for extracting the exact entanglement depth and all separable partitions of a stabilizer state. Our construction is gauge invariant and goes beyond traditional entanglement measures by visually revealing how quantum information and entanglement is distributed. We use this tool to analyze the internal structures of prototypical stabilizer states (GHZ state, cluster state, stabilizer error correction codes) and are able to contrast the complexity of highly entangled volume law states generated by random unitary operators and random projective measurements.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information [8.52497147463548]
We introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution.<n>We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states.
arXiv Detail & Related papers (2025-05-14T17:59:31Z) - Stabilizer-Accelerated Quantum Many-Body Ground-State Estimation [0.0]
We investigate how the stabilizer formalism, in particular highly-entangled stabilizer states, can be used to describe the emergence of many-body shape collectivity.<n>The resulting stabilizer ground state is found to capture to a large extent both bi-partite and collective multi-partite entanglement features.
arXiv Detail & Related papers (2025-05-05T18:01:20Z) - Tensor Cross Interpolation of Purities in Quantum Many-Body Systems [0.0]
In quantum many-body systems the exponential scaling of the Hilbert space with the number of degrees of freedom renders a complete state characterization.<n>Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed.<n>In this work, we demonstrate that the entanglement feature can be efficiently defining using only a amount of samples in the number of degrees of freedom.
arXiv Detail & Related papers (2025-03-21T15:33:00Z) - Variational Transformer Ansatz for the Density Operator of Steady States in Dissipative Quantum Many-Body Systems [44.598178952679575]
We propose the transformer density operator ansatz for determining the steady states of dissipative quantum many-body systems.
We demonstrate the effectiveness of our approach by numerically calculating the steady states of dissipative Ising and Heisenberg spin chain models.
arXiv Detail & Related papers (2025-02-28T05:12:43Z) - Metrological Characterization of Multipartite Continuous-Variable non-Gaussian Entanglement Structure [0.0]
We introduce a method for detecting multipartite entanglement structures in continuous variable systems.
We demonstrate the effectiveness of our method on over $105$ randomly generated multimode-entangled quantum states.
This work provides a general framework for characterizing entanglement structures in diverse continuous variable systems.
arXiv Detail & Related papers (2024-08-22T17:11:13Z) - Improved criteria of detecting multipartite entanglement structure [7.236334007028333]
We propose a systematic method to construct powerful entanglement witnesses which identify better the multipartite entanglement structures.
Our results may be applied to many quantum information processing tasks.
arXiv Detail & Related papers (2024-06-11T14:01:22Z) - Doped stabilizer states in many-body physics and where to find them [0.0]
This work uncovers a fundamental connection between doped stabilizer states and the structure of eigenstates in many-body quantum systems.
We develop efficient classical algorithms for tasks such as finding low-energy eigenstates, simulating quench dynamics, and computing entanglement entropies in these systems.
arXiv Detail & Related papers (2024-03-22T02:21:48Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Sufficient condition for universal quantum computation using bosonic
circuits [44.99833362998488]
We focus on promoting circuits that are otherwise simulatable to computational universality.
We first introduce a general framework for mapping a continuous-variable state into a qubit state.
We then cast existing maps into this framework, including the modular and stabilizer subsystem decompositions.
arXiv Detail & Related papers (2023-09-14T16:15:14Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Detecting entanglement structure in continuous many-body quantum systems [0.0]
A prerequisite for the comprehensive understanding of many-body quantum systems is a characterization in terms of their entanglement structure.
We develop a general scheme for certifying entanglement and demonstrate it by revealing entanglement between distinct subsystems of a spinor Bose-Einstein condensate.
The detection of squeezing in Bogoliubov modes in a multi-mode setting illustrates its potential to boost the capabilities of quantum simulations to study entanglement in spatially extended many-body systems.
arXiv Detail & Related papers (2021-05-25T21:12:07Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.