On the loss of context-awareness in general instruction fine-tuning
- URL: http://arxiv.org/abs/2411.02688v1
- Date: Tue, 05 Nov 2024 00:16:01 GMT
- Title: On the loss of context-awareness in general instruction fine-tuning
- Authors: Yihan Wang, Andrew Bai, Nanyun Peng, Cho-Jui Hsieh,
- Abstract summary: Post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs can harm existing capabilities learned during pretraining.
We propose two methods to mitigate the loss of context awareness in instruct models: post-hoc attention steering on user prompts and conditional instruction fine-tuning with a context-dependency indicator.
- Score: 101.03941308894191
- License:
- Abstract: Pretrained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pretraining. In this paper, we investigate the loss of context awareness after SFT, defined as the capability to extract and understand information from the user-provided context and respond accordingly. We are the first to identify and show that the loss of context-awareness appears on instruction-finetuned LLMs when the chat template is applied to the input prompts. We identify the performance decline is partially caused by the bias embedded into the chat template to focus less on the user-provided context. Based on these observations, we propose two methods to mitigate the loss of context awareness in instruct models: post-hoc attention steering on user prompts and conditional instruction fine-tuning with a context-dependency indicator. Empirical experiments on 4 context-dependent downstream tasks and 3 pretrained LLMs of different sizes show that our methods effectively mitigates the loss of context awareness without compromising the general ability to follow instructions. Our findings also strongly advocate the necessity to carefully benchmark context awareness after instruction fine-tuning.
Related papers
- Context-Parametric Inversion: Why Instruction Finetuning May Not Actually Improve Context Reliance [68.56701216210617]
In-principle, one would expect models to adapt to the user context better after instruction finetuning.
We observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases.
arXiv Detail & Related papers (2024-10-14T17:57:09Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.
We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning [10.897468059705238]
Supervised paraphrasers rely heavily on large quantities of labelled data to help preserve meaning and intent.
In this paper we aim to assist practitioners in developing usable paraphrasers by exploring In-Context Learning (ICL) with large language models (LLMs)
Our study focuses on key factors such as - number and order of demonstrations, exclusion of prompt instruction, and reduction in measured toxicity.
arXiv Detail & Related papers (2023-10-16T16:18:55Z) - Understanding Catastrophic Forgetting in Language Models via Implicit Inference [12.09165658395643]
We demonstrate that improving performance on tasks within the fine-tuning data distribution comes at the expense of capabilities on other tasks.
We propose Conjugate Prompting, which artificially makes the task look farther from the fine-tuning distribution while requiring the same capability.
arXiv Detail & Related papers (2023-09-18T19:28:48Z) - On the Role of Attention in Prompt-tuning [90.97555030446563]
We study prompt-tuning for one-layer attention architectures and study contextual mixture-models.
We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention.
We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information.
arXiv Detail & Related papers (2023-06-06T06:23:38Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
In this paper, we propose an alternative approach, which we term In-Context Probing (ICP)
Similar to in-context learning, we contextualize the representation of the input with an instruction, but instead of decoding the output prediction, we probe the contextualized representation to predict the label.
We show that ICP performs competitive or superior to finetuning and can be particularly helpful to build classifiers on top of smaller models.
arXiv Detail & Related papers (2023-05-23T15:43:04Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
Large language models (LLMs) encode parametric knowledge about world facts.
Their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks.
We assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention.
arXiv Detail & Related papers (2023-03-20T17:54:58Z) - Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt [71.77504700496004]
Vision-language models are pre-trained by aligning image-text pairs in a common space to deal with open-set visual concepts.
To boost the transferability of the pre-trained models, recent works adopt fixed or learnable prompts.
However, how and what prompts can improve inference performance remains unclear.
arXiv Detail & Related papers (2022-05-23T07:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.