論文の概要: Point processes with event time uncertainty
- arxiv url: http://arxiv.org/abs/2411.02694v1
- Date: Tue, 05 Nov 2024 00:46:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:46.537943
- Title: Point processes with event time uncertainty
- Title(参考訳): 事象時不確実性を伴う点過程
- Authors: Xiuyuan Cheng, Tingnan Gong, Yao Xie,
- Abstract要約: ネットワーク上での時間不確実なポイントプロセスのモデル化のためのフレームワークを導入する。
提案手法は,シミュレーションおよび実データに基づく従来のジェネラル線形モデル(GLM)のベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 16.64005584511643
- License:
- Abstract: Point processes are widely used statistical models for uncovering the temporal patterns in dependent event data. In many applications, the event time cannot be observed exactly, calling for the incorporation of time uncertainty into the modeling of point process data. In this work, we introduce a framework to model time-uncertain point processes possibly on a network. We start by deriving the formulation in the continuous-time setting under a few assumptions motivated by application scenarios. After imposing a time grid, we obtain a discrete-time model that facilitates inference and can be computed by first-order optimization methods such as Gradient Descent or Variation inequality (VI) using batch-based Stochastic Gradient Descent (SGD). The parameter recovery guarantee is proved for VI inference at an $O(1/k)$ convergence rate using $k$ SGD steps. Our framework handles non-stationary processes by modeling the inference kernel as a matrix (or tensor on a network) and it covers the stationary process, such as the classical Hawkes process, as a special case. We experimentally show that the proposed approach outperforms previous General Linear model (GLM) baselines on simulated and real data and reveals meaningful causal relations on a Sepsis-associated Derangements dataset.
- Abstract(参考訳): ポイントプロセスは、依存するイベントデータの時間的パターンを明らかにするための統計モデルとして広く利用されている。
多くのアプリケーションでは、イベント時間が正確に観測できず、ポイントプロセスデータのモデリングに時間の不確実性が組み込まれている。
本研究では,ネットワーク上での時間的不確定点過程をモデル化するためのフレームワークを提案する。
まずは、アプリケーションシナリオに動機づけられたいくつかの仮定の下で、継続的設定の定式化を導出することから始めます。
時間グリッドを挿入した後、推論を容易にする離散時間モデルを求め、バッチベースの確率勾配指数(SGD)を用いて、勾配指数や変動不等式(VI)などの一階最適化手法で計算できる。
パラメータ回復保証は、$k$ SGD ステップを用いて、$O(1/k)$収束率で VI の推論に対して証明される。
我々のフレームワークは、推論カーネルを行列(またはネットワーク上のテンソル)としてモデル化することで、非定常過程を処理し、古典的なホークス過程のような定常過程を特別なケースとしてカバーする。
提案手法は,シミュレーションおよび実データに基づく従来のジェネラル線形モデル(GLM)のベースラインよりも優れており,セプシス関連分散データセット上で有意な因果関係を示す。
関連論文リスト
- A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior [21.23523473330637]
非同期イベントシーケンスクラスタリングは、教師なしの方法で類似のイベントシーケンスをグループ化することを目的としている。
私たちの研究は、イベントシーケンスクラスタリングのためのフレキシブルな学習フレームワークを提供し、潜在的なクラスタ数の自動識別を可能にします。
これは、ニューラルネットワークベースのモデルを含む幅広いパラメトリック時間点プロセスに適用できる。
論文 参考訳(メタデータ) (2024-11-07T03:21:30Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
設定値データを連続的にモデリングするための一般的なフレームワークを開発する。
また,そのようなモデルを用いて確率的クエリに答える推論手法も開発している。
論文 参考訳(メタデータ) (2023-12-22T20:16:10Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Online Time Series Anomaly Detection with State Space Gaussian Processes [12.483273106706623]
R-ssGPFAは、一様および多変量時系列の教師なしオンライン異常検出モデルである。
高次元時系列に対して、時系列の一般的な潜伏過程を特定するためにガウス過程因子解析の拡張を提案する。
異常観測時にカルマン更新をスキップすることで,モデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2022-01-18T06:43:32Z) - Improved Prediction and Network Estimation Using the Monotone Single
Index Multi-variate Autoregressive Model [34.529641317832024]
単調単一指数多変量自己回帰モデル(SIMAM)に基づく半パラメトリックアプローチを開発する。
我々は、従属データに対する理論的保証と、交互に投影される勾配降下アルゴリズムを提供する。
シミュレーションデータと2つの実データ例において,優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-28T12:32:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。