CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration
- URL: http://arxiv.org/abs/2411.02829v2
- Date: Sun, 08 Jun 2025 00:57:21 GMT
- Title: CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration
- Authors: Hongpeng Jin, Yanzhao Wu,
- Abstract summary: Large Language Models (LLMs) exhibit remarkable human-like predictive capabilities.<n>It is challenging to deploy LLMs to provide efficient and adaptive inference services at the edge.<n>This paper proposes a novel Cloud-Edge Collaboration framework for LLMs (CE-CoLLM) to tackle these challenges.
- Score: 1.6021932740447968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit remarkable human-like predictive capabilities. However, it is challenging to deploy LLMs to provide efficient and adaptive inference services at the edge. This paper proposes a novel Cloud-Edge Collaboration framework for LLMs (CE-CoLLM) to tackle these challenges. First, we identify the transmission of LLM contextual data between the cloud and edge as a key performance bottleneck, which introduces substantial communication overhead that dominates overall inference latency and makes na\"ive cloud-edge collaboration for LLMs inefficient. Second, we introduce a suite of novel techniques, including a latency-aware early exit mechanism and efficient cloud context management, into CE-CoLLM, which collectively reduce communication overhead and preserve LLM inference accuracy. Third, we design two adaptive inference modes to accommodate diverse edge environments: (1) a low-latency standalone edge inference mode that enables reliable edge-side independent LLM inference even under unstable network conditions, and (2) a high-accuracy cloud-edge collaborative inference mode that adaptively leverages cloud resources to enhance prediction accuracy. Extensive experiments on multiple benchmark datasets demonstrate that CE-CoLLM reduces overall inference time by up to 13.81% and offloads over 84.53% of the computational workload from the cloud to the edge, compared to conventional cloud-based LLM deployment, without sacrificing prediction accuracy. The code is provided on GitHub at https://github.com/mlsysx/CE-CoLLM.
Related papers
- Federated Learning-Enabled Hybrid Language Models for Communication-Efficient Token Transmission [87.68447072141402]
Hybrid Language Models (HLMs) combine the low-latency efficiency of Small Language Models (SLMs) on edge devices with the high accuracy of Large Language Models (LLMs) on centralized servers.<n>We propose FedHLM, a communication-efficient HLM framework that integrates uncertainty-aware inference with Federated Learning (FL)
arXiv Detail & Related papers (2025-06-30T02:56:11Z) - Edge-First Language Model Inference: Models, Metrics, and Tradeoffs [0.7980273012483663]
This work examines the interplay between edge and cloud deployments, starting from detailed benchmarking of SLM capabilities on single edge devices.<n>We identify scenarios where edge inference offers comparable performance with lower costs, and others where cloud fallback becomes essential due to limits in scalability or model capacity.<n>Rather than proposing a one-size-fits-all solution, we present platform-level comparisons and design insights for building efficient, adaptive LM inference systems.
arXiv Detail & Related papers (2025-05-22T10:43:00Z) - Prompt Inversion Attack against Collaborative Inference of Large Language Models [14.786666134508645]
We introduce the concept of prompt inversion attack (PIA), where a malicious participant intends to recover the input prompt through the activation transmitted by its previous participant.
Our method achieves an 88.4% token accuracy on the Skytrax dataset with the Llama-65B model when inverting the maximum number of transformer layers.
arXiv Detail & Related papers (2025-03-12T03:20:03Z) - DILEMMA: Joint LLM Quantization and Distributed LLM Inference Over Edge Computing Systems [1.14179290793997]
This paper introduces DILEMMA, a novel framework addressing the challenges of deploying Large Language Models in Edge Computing systems.
DILEMMA formulates an Linear Programming problem to minimize total delay while ensuring acceptable LLM performance levels.
It achieves a quantization ratio of up to 12.75% while preserving model loss, highlighting its effectiveness in resource-constrained environments.
arXiv Detail & Related papers (2025-03-03T16:16:33Z) - A Hybrid Swarm Intelligence Approach for Optimizing Multimodal Large Language Models Deployment in Edge-Cloud-based Federated Learning Environments [10.72166883797356]
Federated Learning (FL), Multimodal Large Language Models (MLLMs), and edge-cloud computing enables distributed and real-time data processing.
We propose a novel hybrid framework wherein MLLMs are deployed on edge devices equipped with sufficient resources and battery life, while the majority of training occurs in the cloud.
Our experimental results show that the proposed method significantly improves system performance, achieving an accuracy of 92%, reducing communication cost by 30%, and enhancing client participation.
arXiv Detail & Related papers (2025-02-04T03:03:24Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning [36.37717583840935]
We propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs.
Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, and the cloud agent equipped with a larger LLM.
This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent.
arXiv Detail & Related papers (2024-10-17T03:07:37Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
This paper explores a collaborative training framework that integrates mobile users with edge servers to optimize resource allocation.
We formulate a multi-objective optimization problem to minimize the total energy consumption and delay during training.
We also address the common issue of instability in model performance by incorporating stability enhancements into our objective function.
arXiv Detail & Related papers (2024-09-30T12:36:27Z) - Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance [0.0]
Large language models (LLMs) are known for their exceptional performance across a range of natural language processing tasks.
Smaller language models (SLMs), which can be deployed on lower-cost edge devices, struggle to match the performance of their larger counterparts.
This paper presents a novel hybrid inference approach that leverages the strengths of both model types.
arXiv Detail & Related papers (2024-09-15T15:12:45Z) - Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning [13.26886445965894]
Pluto and Charon (PAC) is a time and memory efficient collaborative edge AI framework for personal LLMs fine-tuning.
PAC implements a personal LLMs fine-tuning technique that is efficient in terms of parameters, time, and memory.
Extensive evaluation based on prototype implementation demonstrates that PAC remarkably outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-20T11:30:12Z) - Q-Sparse: All Large Language Models can be Fully Sparsely-Activated [93.45300714803429]
We introduce Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs)
Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference.
We also introduce Block Q-Sparse for batch training and inference.
arXiv Detail & Related papers (2024-07-15T17:59:29Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - Cloud-Device Collaborative Learning for Multimodal Large Language Models [24.65882336700547]
We introduce a Cloud-Device Collaborative Continual Adaptation framework to enhance the performance of compressed, device-deployed MLLMs.
Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment.
arXiv Detail & Related papers (2023-12-26T18:46:14Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions.
FedKSeed employs zeroth-order optimization with a finite set of random seeds.
It significantly reduces transmission requirements between the server and clients to just a few random seeds.
arXiv Detail & Related papers (2023-12-11T13:03:21Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.