Edge-First Language Model Inference: Models, Metrics, and Tradeoffs
- URL: http://arxiv.org/abs/2505.16508v2
- Date: Thu, 29 May 2025 08:56:27 GMT
- Title: Edge-First Language Model Inference: Models, Metrics, and Tradeoffs
- Authors: SiYoung Jang, Roberto Morabito,
- Abstract summary: This work examines the interplay between edge and cloud deployments, starting from detailed benchmarking of SLM capabilities on single edge devices.<n>We identify scenarios where edge inference offers comparable performance with lower costs, and others where cloud fallback becomes essential due to limits in scalability or model capacity.<n>Rather than proposing a one-size-fits-all solution, we present platform-level comparisons and design insights for building efficient, adaptive LM inference systems.
- Score: 0.7980273012483663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of Language Models (LMs) across industries is driving interest in deploying these services across the computing continuum, from the cloud to the network edge. This shift aims to reduce costs, lower latency, and improve reliability and privacy. Small Language Models (SLMs), enabled by advances in model compression, are central to this shift, offering a path to on-device inference on resource-constrained edge platforms. This work examines the interplay between edge and cloud deployments, starting from detailed benchmarking of SLM capabilities on single edge devices, and extending to distributed edge clusters. We identify scenarios where edge inference offers comparable performance with lower costs, and others where cloud fallback becomes essential due to limits in scalability or model capacity. Rather than proposing a one-size-fits-all solution, we present platform-level comparisons and design insights for building efficient, adaptive LM inference systems across heterogeneous environments.
Related papers
- The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.<n>PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.<n> evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - A Hybrid Swarm Intelligence Approach for Optimizing Multimodal Large Language Models Deployment in Edge-Cloud-based Federated Learning Environments [10.72166883797356]
Federated Learning (FL), Multimodal Large Language Models (MLLMs), and edge-cloud computing enables distributed and real-time data processing.<n>We propose a novel hybrid framework wherein MLLMs are deployed on edge devices equipped with sufficient resources and battery life, while the majority of training occurs in the cloud.<n>Our experimental results show that the proposed method significantly improves system performance, achieving an accuracy of 92%, reducing communication cost by 30%, and enhancing client participation.
arXiv Detail & Related papers (2025-02-04T03:03:24Z) - CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration [1.6021932740447968]
Large Language Models (LLMs) exhibit remarkable human-like predictive capabilities.<n>It is challenging to deploy LLMs to provide efficient and adaptive inference services at the edge.<n>This paper proposes a novel Cloud-Edge Collaboration framework for LLMs (CE-CoLLM) to tackle these challenges.
arXiv Detail & Related papers (2024-11-05T06:00:27Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Cloud-Device Collaborative Learning for Multimodal Large Language Models [24.65882336700547]
We introduce a Cloud-Device Collaborative Continual Adaptation framework to enhance the performance of compressed, device-deployed MLLMs.
Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment.
arXiv Detail & Related papers (2023-12-26T18:46:14Z) - ECLM: Efficient Edge-Cloud Collaborative Learning with Continuous
Environment Adaptation [47.35179593006409]
We propose ECLM, an edge-cloud collaborative learning framework for rapid model adaptation for dynamic edge environments.
We show that ECLM significantly improves model performance (e.g., 18.89% accuracy increase) and resource efficiency (e.g. 7.12x communication cost reduction) in adapting models to dynamic edge environments.
arXiv Detail & Related papers (2023-11-18T14:10:09Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.