LLM Generated Distribution-Based Prediction of US Electoral Results, Part I
- URL: http://arxiv.org/abs/2411.03486v1
- Date: Tue, 05 Nov 2024 20:10:25 GMT
- Title: LLM Generated Distribution-Based Prediction of US Electoral Results, Part I
- Authors: Caleb Bradshaw, Caelen Miller, Sean Warnick,
- Abstract summary: This paper introduces distribution-based prediction, a novel approach to using Large Language Models (LLMs) as predictive tools.
We demonstrate the use of distribution-based prediction in the context of recent United States presidential election.
- Score: 0.0
- License:
- Abstract: This paper introduces distribution-based prediction, a novel approach to using Large Language Models (LLMs) as predictive tools by interpreting output token probabilities as distributions representing the models' learned representation of the world. This distribution-based nature offers an alternative perspective for analyzing algorithmic fidelity, complementing the approach used in silicon sampling. We demonstrate the use of distribution-based prediction in the context of recent United States presidential election, showing that this method can be used to determine task specific bias, prompt noise, and algorithmic fidelity. This approach has significant implications for assessing the reliability and increasing transparency of LLM-based predictions across various domains.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - A Distributional Analogue to the Successor Representation [54.99439648059807]
This paper contributes a new approach for distributional reinforcement learning.
It elucidates a clean separation of transition structure and reward in the learning process.
As an illustration, we show that it enables zero-shot risk-sensitive policy evaluation.
arXiv Detail & Related papers (2024-02-13T15:35:24Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - Domain Generalization with Small Data [27.040070085669086]
We learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings.
Our proposed method can marriage the measurement on the textitdistribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment.
arXiv Detail & Related papers (2024-02-09T02:59:08Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Distributionally Robust Machine Learning with Multi-source Data [6.383451076043423]
We introduce a group distributionally robust prediction model to optimize an adversarial reward about explained variance with respect to a class of target distributions.
Compared to classical empirical risk minimization, the proposed robust prediction model improves the prediction accuracy for target populations with distribution shifts.
We demonstrate the performance of our proposed group distributionally robust method on simulated and real data with random forests and neural networks as base-learning algorithms.
arXiv Detail & Related papers (2023-09-05T13:19:40Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
We show that Sparse Implicit Processes (SIP) is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model.
We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
arXiv Detail & Related papers (2022-07-21T18:00:01Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approxorimator for dense image prediction tasks.
We capture the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone.
We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.
arXiv Detail & Related papers (2022-03-29T12:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.