論文の概要: AMNCutter: Affinity-Attention-Guided Multi-View Normalized Cutter for Unsupervised Surgical Instrument Segmentation
- arxiv url: http://arxiv.org/abs/2411.03695v1
- Date: Wed, 06 Nov 2024 06:33:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:31.496486
- Title: AMNCutter: Affinity-Attention-Guided Multi-View Normalized Cutter for Unsupervised Surgical Instrument Segmentation
- Title(参考訳): AMNCutter:非観血的機器分割のためのアフィニティアテンションガイド付き多視点正規化カッター
- Authors: Mingyu Sheng, Jianan Fan, Dongnan Liu, Ron Kikinis, Weidong Cai,
- Abstract要約: 我々は,Multi-View Normalized Cutter(m-NCutter)という新しいモジュールを特徴とするラベルフリーな教師なしモデルを提案する。
本モデルでは, パッチ親和性を利用したグラフカット損失関数を用いて, 疑似ラベルの不要化を図った。
我々は、複数のSISデータセットにわたる包括的な実験を行い、事前訓練されたモデルとして、アプローチの最先端(SOTA)パフォーマンス、堅牢性、および例外的なポテンシャルを検証する。
- 参考スコア(独自算出の注目度): 7.594796294925481
- License:
- Abstract: Surgical instrument segmentation (SIS) is pivotal for robotic-assisted minimally invasive surgery, assisting surgeons by identifying surgical instruments in endoscopic video frames. Recent unsupervised surgical instrument segmentation (USIS) methods primarily rely on pseudo-labels derived from low-level features such as color and optical flow, but these methods show limited effectiveness and generalizability in complex and unseen endoscopic scenarios. In this work, we propose a label-free unsupervised model featuring a novel module named Multi-View Normalized Cutter (m-NCutter). Different from previous USIS works, our model is trained using a graph-cutting loss function that leverages patch affinities for supervision, eliminating the need for pseudo-labels. The framework adaptively determines which affinities from which levels should be prioritized. Therefore, the low- and high-level features and their affinities are effectively integrated to train a label-free unsupervised model, showing superior effectiveness and generalization ability. We conduct comprehensive experiments across multiple SIS datasets to validate our approach's state-of-the-art (SOTA) performance, robustness, and exceptional potential as a pre-trained model. Our code is released at https://github.com/MingyuShengSMY/AMNCutter.
- Abstract(参考訳): 外科用機器のセグメンテーション (SIS) は、内視鏡的ビデオフレーム内の手術用機器を識別することにより、手術者を支援するロボット支援の最小侵襲手術において重要である。
最近のunsupervised surgery instrument segmentation (USIS) 法は、主に色や光の流れなどの低レベルの特徴から派生した擬似ラベルに依存しているが、これらの手法は、複雑で目に見えない内視鏡のシナリオにおいて、限られた効果と一般化性を示す。
本研究では,Multi-View Normalized Cutter (m-NCutter) と呼ばれる新しいモジュールを特徴とするラベルフリーな教師なしモデルを提案する。
従来のUSISと異なり、我々のモデルは、パッチ親和性を利用して監視を行い、擬似ラベルの必要性をなくすグラフカット損失関数を用いて訓練されている。
このフレームワークはどのレベルを優先順位付けすべきかを適応的に決定する。
したがって,低レベル・高レベルの特徴とその親和性は,ラベルのない教師なしモデルの訓練に有効に統合され,優れた効果と一般化能力を示す。
我々は、複数のSISデータセットにわたる包括的な実験を行い、事前訓練されたモデルとして、アプローチの最先端(SOTA)パフォーマンス、堅牢性、および例外的なポテンシャルを検証する。
私たちのコードはhttps://github.com/MingyuShengSMY/AMNCutter.comで公開されています。
関連論文リスト
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View [7.594796294925481]
本稿では,ビデオフレーム分割をグラフ分割問題として再検討し,教師なしの手法を提案する。
自己教師付き事前学習モデルは、まず、高レベルな意味的特徴をキャプチャする特徴抽出器として活用される。
ディープ」固有ベクトルでは、手術用ビデオフレームは、ツールや組織などの異なるモジュールに意味的に分割され、区別可能な意味情報を提供する。
論文 参考訳(メタデータ) (2024-08-27T05:31:30Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Rethinking Low-quality Optical Flow in Unsupervised Surgical Instrument Segmentation [42.471249616792214]
ロボット補助手術において,ビデオベースの手術器具セグメンテーションが重要な役割を担っている。
教師なしのセグメンテーションは、光学フローの典型的に低い品質のために区別が難しいモーションキューに大きく依存している。
本研究は,低品質光流の固有の限界にもかかわらず,モデル性能の向上という課題に対処する。
論文 参考訳(メタデータ) (2024-03-15T06:19:02Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
そこで我々は,様々な外科手術を施した楽器の先端を正確に分類する新しいビジュアル・キネマティクスグラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
クロスモーダル・コントラッシブ・ロスは、キネマティクスからチップセグメンテーションのイメージへの頑健な幾何学的先行を組み込むように設計されている。
論文 参考訳(メタデータ) (2023-09-02T14:52:58Z) - Cross-Dataset Adaptation for Instrument Classification in Cataract
Surgery Videos [54.1843419649895]
特定のデータセットでこのタスクをうまく実行する最先端モデルでは、別のデータセットでテストすると、パフォーマンスが低下する。
本稿では,Barlow Adaptorと呼ばれる新しいエンドツーエンドのUnsupervised Domain Adaptation (UDA)手法を提案する。
さらに,BFAL(Barlow Feature Alignment Loss)と呼ばれる,異なるドメインにまたがる特徴を整列させる新たな損失を導入する。
論文 参考訳(メタデータ) (2023-07-31T18:14:18Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
FUN-SISについて述べる。
我々は、暗黙の動作情報と楽器形状に依存して、完全に装飾されていない内視鏡ビデオに基づいてフレーム単位のセグメンテーションモデルを訓練する。
手術器具のセグメンテーションの完全教師なしの結果は, 完全に監督された最先端のアプローチとほぼ同等である。
論文 参考訳(メタデータ) (2022-02-16T15:32:02Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。