Suppressed Energy Relaxation in the Quantum Rabi Model at the Critical Point
- URL: http://arxiv.org/abs/2411.03710v1
- Date: Wed, 06 Nov 2024 07:25:01 GMT
- Title: Suppressed Energy Relaxation in the Quantum Rabi Model at the Critical Point
- Authors: Ye-Hong Chen, Zhi-Cheng Shi, Yu-Ran Zhang, Franco Nori, Yan Xia,
- Abstract summary: We derive a modified master equation for the quantum Rabi model in the parameter regime where quantum criticality can occur.
The modified master equation can avoid some unphysical predictions, such as excitations in the system at zero temperature and emission of ground-state photons.
- Score: 2.9562703254291667
- License:
- Abstract: We derive a modified master equation for the quantum Rabi model in the parameter regime where quantum criticality can occur. The modified master equation can avoid some unphysical predictions, such as excitations in the system at zero temperature and emission of ground-state photons. Due to spectrum collapse, we find that there is mostly no energy relaxation in the system at the critical point. For the same reason, phase coherence rapidly reduces and vanishes at the critical point. We analyze the quantum metrological limits of the system in the presence of dephasing. These results show a strong limitation on the precision of phase-shift estimation.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Walking with the atoms in a chemical bond : A perspective using quantum
phase transition [0.0]
Recent observation of a quantum phase transition in a single trapped 171 Yb ion in the Paul trap indicates the possibility of quantum phase transition in finite systems.
This perspective focuses on examining chemical processes at ultracold temperature as quantum phase transitions.
arXiv Detail & Related papers (2022-08-25T15:57:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum quench thermodynamics at high temperatures [0.0]
entropy produced when a system undergoes an infinitesimal quench is directly linked to the work parameter susceptibility, making it sensitive to the existence of a quantum critical point.
We show that these individual contributions continue to exhibit signatures of the quantum phase transition, even at arbitrarily high temperatures.
arXiv Detail & Related papers (2021-09-08T15:20:50Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.