Low-depth quantum symmetrization
- URL: http://arxiv.org/abs/2411.04019v1
- Date: Wed, 06 Nov 2024 16:00:46 GMT
- Title: Low-depth quantum symmetrization
- Authors: Zhenning Liu, Andrew M. Childs, Daniel Gottesman,
- Abstract summary: We present the first quantum algorithm for the general symmetrization problem.
Our algorithm, based on (quantum) sorting networks, uses $O(log n)$ depth and $O(nlog m)$ ancilla qubits.
We also propose an $O(log2 n)$-depth quantum algorithm to transform second-quantized states to first-quantized states.
- Score: 1.5566524830295307
- License:
- Abstract: Quantum symmetrization is the task of transforming a non-strictly increasing list of $n$ integers into an equal superposition of all permutations of the list (or more generally, performing this operation coherently on a superposition of such lists). This task plays a key role in initial state preparation for first-quantized simulations. A weaker version of symmetrization in which the input list is \emph{strictly} increasing has been extensively studied due to its application to fermionic systems, but the general symmetrization problem with repetitions in the input list has not been solved previously. We present the first quantum algorithm for the general symmetrization problem. Our algorithm, based on (quantum) sorting networks, uses $O(\log n)$ depth and $O(n\log m)$ ancilla qubits where $m$ is the greatest possible value of the list, enabling efficient simulation of bosonic quantum systems in first quantization. Furthermore, our algorithm can prepare (superpositions of) Dicke states of any Hamming weight in $O(\log n)$ depth using $O(n\log n)$ ancilla qubits. We also propose an $O(\log^2 n)$-depth quantum algorithm to transform second-quantized states to first-quantized states. Using this algorithm, QFT-based quantum telescope arrays can image brighter photon sources, extending quantum interferometric imaging systems to a new regime.
Related papers
- Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Non-Linear Transformations of Quantum Amplitudes: Exponential
Improvement, Generalization, and Applications [0.0]
Quantum algorithms manipulate the amplitudes of quantum states to find solutions to computational problems.
We present a framework for applying a general class of non-linear functions to the amplitudes of quantum states.
Our work provides an important and efficient building block with potentially numerous applications in areas such as optimization, state preparation, quantum chemistry, and machine learning.
arXiv Detail & Related papers (2023-09-18T14:57:21Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Approximate Counting for Markov Chains and Application to
Collision Counting [0.0]
We show how to generalize the quantum approximate counting technique developed by Brassard, Hoyer and Tapp [ICALP 1998] to estimating the number of marked states of a Markov chain.
This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful "quantum walk based search" framework established by Magniez, Nayak, Roland and Santha.
arXiv Detail & Related papers (2022-04-06T03:04:42Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.