wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals
- URL: http://arxiv.org/abs/2411.04644v1
- Date: Thu, 07 Nov 2024 12:01:36 GMT
- Title: wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals
- Authors: Jonathan F. Carter, Lionel Tarassenko,
- Abstract summary: wav2sleep is a unified model designed to operate on variable sets of input signals during training and inference.
It outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.
- Score: 0.6261444979025643
- License:
- Abstract: Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.
Related papers
- PedSleepMAE: Generative Model for Multimodal Pediatric Sleep Signals [7.949705607963995]
PedSleepMAE is a generative model that fully leverages multimodal pediatric sleep signals including multichannel EEGs, respiratory signals, EOGs and EMG.
Its embeddings are also shown to capture subtle differences in sleep signals coming from a rare genetic disorder.
This is the first general-purpose generative model trained on multiple types of pediatric sleep signals.
arXiv Detail & Related papers (2024-11-01T16:30:01Z) - MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
We develop an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency.
Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba.
The model is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency.
arXiv Detail & Related papers (2024-05-30T15:16:53Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
arXiv Detail & Related papers (2023-02-17T07:37:54Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Temporal convolutional networks and transformers for classifying the
sleep stage in awake or asleep using pulse oximetry signals [0.0]
We develop a network architecture with the aim of classifying the sleep stage in awake or asleep using only HR signals from a pulse oximeter.
Transformers are able to model the sequence, learning the transition rules between sleep stages.
The overall accuracy, specificity, sensibility, and Cohen's Kappa coefficient were 90.0%, 94.9%, 78.1%, and 0.73.
arXiv Detail & Related papers (2021-01-29T22:58:33Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.