Sleep Stage Classification using Multimodal Embedding Fusion from EOG and PSM
- URL: http://arxiv.org/abs/2506.06912v1
- Date: Sat, 07 Jun 2025 20:18:45 GMT
- Title: Sleep Stage Classification using Multimodal Embedding Fusion from EOG and PSM
- Authors: Olivier Papillon, Rafik Goubran, James Green, Julien Larivière-Chartier, Caitlin Higginson, Frank Knoefel, Rébecca Robillard,
- Abstract summary: This study introduces a novel approach that leverages ImageBind, a multimodal embedding deep learning model, to integrate PSM data with dual-channel EOG signals for sleep stage classification.<n>Our results demonstrate that fine-tuning ImageBind significantly improves classification accuracy, outperforming existing models.
- Score: 0.06282171844772422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate sleep stage classification is essential for diagnosing sleep disorders, particularly in aging populations. While traditional polysomnography (PSG) relies on electroencephalography (EEG) as the gold standard, its complexity and need for specialized equipment make home-based sleep monitoring challenging. To address this limitation, we investigate the use of electrooculography (EOG) and pressure-sensitive mats (PSM) as less obtrusive alternatives for five-stage sleep-wake classification. This study introduces a novel approach that leverages ImageBind, a multimodal embedding deep learning model, to integrate PSM data with dual-channel EOG signals for sleep stage classification. Our method is the first reported approach that fuses PSM and EOG data for sleep stage classification with ImageBind. Our results demonstrate that fine-tuning ImageBind significantly improves classification accuracy, outperforming existing models based on single-channel EOG (DeepSleepNet), exclusively PSM data (ViViT), and other multimodal deep learning approaches (MBT). Notably, the model also achieved strong performance without fine-tuning, highlighting its adaptability to specific tasks with limited labeled data, making it particularly advantageous for medical applications. We evaluated our method using 85 nights of patient recordings from a sleep clinic. Our findings suggest that pre-trained multimodal embedding models, even those originally developed for non-medical domains, can be effectively adapted for sleep staging, with accuracies approaching systems that require complex EEG data.
Related papers
- PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging [63.05435596565677]
We propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals.<n> PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being 4-times more data-efficient than BatchNorm.
arXiv Detail & Related papers (2025-03-06T16:20:25Z) - SleepGMUformer: A gated multimodal temporal neural network for sleep staging [12.839348425917581]
This paper proposes a gated temporal neural network for multidomain sleep data, including heart rate, motion, steps, EEG (Fpz-Cz, Pz-Oz), and EOG from WristHR-Motion-Sleep and SleepEDF-78.<n>The model integrates: 1) a pre-processing module for feature alignment, missing value handling, and EEG de-trending; 2) a feature extraction module for complex sleep features in the time dimension; and 3) a dynamic fusion module for real-time modality weighting.
arXiv Detail & Related papers (2025-02-20T03:42:42Z) - Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework [2.424910201171407]
This study introduces SynthSleepNet, a multimodal hybrid self-supervised learning framework for analyzing polysomnography (PSG) data.<n> SynthSleepNet effectively integrates masked prediction and contrastive learning to leverage complementary features across multiple modalities.<n>It achieved superior performance compared to state-of-the-art methods across three downstream tasks.
arXiv Detail & Related papers (2025-02-18T10:11:50Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
We develop an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency.
Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba.
The model is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency.
arXiv Detail & Related papers (2024-05-30T15:16:53Z) - Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification [1.565361244756411]
We introduce an innovative approach to automated sleep stage classification using EOG signals, addressing the discomfort and impracticality associated with EEG data acquisition.
Our proposed SE-Resnet-Transformer model provides an accurate classification of five distinct sleep stages from raw EOG signal.
arXiv Detail & Related papers (2023-09-25T16:23:39Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
arXiv Detail & Related papers (2023-02-17T07:37:54Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.