論文の概要: ESC-MISR: Enhancing Spatial Correlations for Multi-Image Super-Resolution in Remote Sensing
- arxiv url: http://arxiv.org/abs/2411.04706v1
- Date: Thu, 07 Nov 2024 13:45:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:34.880843
- Title: ESC-MISR: Enhancing Spatial Correlations for Multi-Image Super-Resolution in Remote Sensing
- Title(参考訳): ESC-MISR:リモートセンシングにおけるマルチイメージ超解像のための空間相関の強化
- Authors: Zhihui Zhang, Jinhui Pang, Jianan Li, Xiaoshuai Hao,
- Abstract要約: リモートセンシングにおけるマルチイメージ超解像(MISR-RS)は,リモートセンシングコミュニティにおいて重要な研究課題である。
HR画像再構成のための複数の画像の空間的時間的関係を完全に活用した,ESC-MISR(Enhancing spatial correlations in MISR)という新しいフレームワークを提案する。
提案手法は, ProBA-V データセットの2バンドでそれぞれ 0.70dB と 0.76dB cPSNR の改善を実現している。
- 参考スコア(独自算出の注目度): 9.782167510476599
- License:
- Abstract: Multi-Image Super-Resolution (MISR) is a crucial yet challenging research task in the remote sensing community. In this paper, we address the challenging task of Multi-Image Super-Resolution in Remote Sensing (MISR-RS), aiming to generate a High-Resolution (HR) image from multiple Low-Resolution (LR) images obtained by satellites. Recently, the weak temporal correlations among LR images have attracted increasing attention in the MISR-RS task. However, existing MISR methods treat the LR images as sequences with strong temporal correlations, overlooking spatial correlations and imposing temporal dependencies. To address this problem, we propose a novel end-to-end framework named Enhancing Spatial Correlations in MISR (ESC-MISR), which fully exploits the spatial-temporal relations of multiple images for HR image reconstruction. Specifically, we first introduce a novel fusion module named Multi-Image Spatial Transformer (MIST), which emphasizes parts with clearer global spatial features and enhances the spatial correlations between LR images. Besides, we perform a random shuffle strategy for the sequential inputs of LR images to attenuate temporal dependencies and capture weak temporal correlations in the training stage. Compared with the state-of-the-art methods, our ESC-MISR achieves 0.70dB and 0.76dB cPSNR improvements on the two bands of the PROBA-V dataset respectively, demonstrating the superiority of our method.
- Abstract(参考訳): マルチイメージ超解像(MISR)はリモートセンシングコミュニティにおいて重要な研究課題である。
本稿では、衛星が取得した複数の低解像度(LR)画像から高解像度(HR)画像を生成することを目的とした、MISR-RS(Multi- Image Super-Resolution in Remote Sensing)の課題に対処する。
近年, LR画像間の時間相関の弱さがMISR-RSタスクの注目度を高めている。
しかし、既存のMISR法では、LR画像を強い時間的相関を持つシーケンスとして扱い、空間的相関を見越し、時間的依存を示唆している。
この問題に対処するため, HR画像再構成のための複数画像の空間的時間的関係をフル活用する, ESC-MISR(Enhancing spatial correlations in MISR) という新しいエンドツーエンドフレームワークを提案する。
具体的には、まず、MIST(Multi- Image Spatial Transformer)と呼ばれる新しい融合モジュールを紹介し、このモジュールは、より鮮明な空間的特徴を持つ部分を強調し、LR画像間の空間的相関を強化する。
さらに、LR画像の逐次入力に対してランダムシャッフル戦略を実行し、時間的依存を減らし、トレーニング段階における弱い時間的相関を捉える。
ESC-MISRは最先端の手法と比較して, ProBA-V データセットの2バンドに対してそれぞれ 0.70dB と 0.76dB cPSNR の改善を達成し,本手法の優位性を実証した。
関連論文リスト
- Learning Two-factor Representation for Magnetic Resonance Image Super-resolution [1.294284364022674]
2要素表現に基づくMR画像超解像法を提案する。
具体的には、強度信号を学習可能な基底と係数の線形結合に分解する。
提案手法は最先端の性能を達成し,より優れた視覚的忠実度とロバスト性を実現する。
論文 参考訳(メタデータ) (2024-09-15T13:32:24Z) - UnmixingSR: Material-aware Network with Unsupervised Unmixing as Auxiliary Task for Hyperspectral Image Super-resolution [5.167168688234238]
本論文では、UnmixingSRと呼ばれる、コンポーネント対応ハイパースペクトル画像(HIS)超解像ネットワークを提案する。
我々は、SR問題の解法における方法の安定性を高めるために、LR量とHR量との結合を用いる。
実験結果から,SR問題に組み込まれた補助的タスクとしてのアンミックスプロセスが実現可能で合理的であることが示唆された。
論文 参考訳(メタデータ) (2024-07-09T03:41:02Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
我々は、リモートセンシング画像(RSI)の超高解像度化のために、視覚状態空間モデル(Mamba)を統合するための最初の試みを開発した。
より優れたSR再構築を実現するため,FMSRと呼ばれる周波数支援型Mambaフレームワークを考案した。
我々のFMSRは、周波数選択モジュール(FSM)、ビジョン状態空間モジュール(VSSM)、ハイブリッドゲートモジュール(HGM)を備えた多層融合アーキテクチャを備えている。
論文 参考訳(メタデータ) (2024-05-08T11:09:24Z) - Deep 3D World Models for Multi-Image Super-Resolution Beyond Optical
Flow [27.31768206943397]
マルチイメージ・スーパーレゾリューション(MISR)は、複数の画像を組み合わせることで、低解像度(LR)取得の空間分解能を高めることができる。
提案したモデルであるEpiMISRは,光学的流れから離れ,取得過程のエピポーラ幾何学を明示的に用いている。
論文 参考訳(メタデータ) (2024-01-30T12:55:49Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
誘導画像超解像(GISR)は、HR画像の誘導の下で低解像度(LR)目標画像の空間分解能を高めて高解像度(HR)目標画像を得る。
従来のモデルベース手法は主に画像全体を取り、HR目標画像とHRガイダンス画像との事前分布を仮定する。
HR目標画像上で2種類の事前性を持つGISRの最大後部(MAP)推定モデルを提案する。
論文 参考訳(メタデータ) (2022-02-12T15:37:13Z) - IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via
Implicit Neural Representation [33.55719364798433]
本稿では、複数の低分解能MR画像に基づいてトレーニングしたIREMと呼ばれる新しい画像再構成ネットワークを提案する。
IREMはスキャン時間を短縮し、SNRと局所像の詳細な点から高分解能MRイメージングを実現する。
論文 参考訳(メタデータ) (2021-06-29T05:25:43Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
本稿では、RefSRのためのMASAネットワークを提案し、これらの問題に対処するために2つの新しいモジュールを設計する。
提案したMatch & extract Moduleは、粗大な対応マッチング方式により計算コストを大幅に削減する。
空間適応モジュールは、LR画像とRef画像の分布の差を学習し、Ref特徴の分布を空間適応的にLR特徴の分布に再マップする。
論文 参考訳(メタデータ) (2021-06-04T07:15:32Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
単一の画像スーパーリゾリューション(SISR)は、与えられた低リゾリューション(LR)画像から高解像度(HR)画像を再構成することを目的とする。
新規な単像超解像拡散確率モデル(SRDiff)を提案する。
SRDiffはデータ可能性の変動境界の変種に最適化されており、多様で現実的なSR予測を提供することができる。
論文 参考訳(メタデータ) (2021-04-30T12:31:25Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of
Satellite Imagery [55.253395881190436]
MFSR(Multi-frame Super-Resolution)は、問題に対するより根底的なアプローチを提供する。
これは、地球上の人間の影響を衛星で観測する上で重要である。
我々は,MFSRにおける最初のディープラーニングアプローチであるHighRes-netを紹介し,そのサブタスクをエンドツーエンドで学習する。
論文 参考訳(メタデータ) (2020-02-15T22:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。