HiLAB: A Hybrid Inverse-Design Framework
- URL: http://arxiv.org/abs/2505.17491v1
- Date: Fri, 23 May 2025 05:34:56 GMT
- Title: HiLAB: A Hybrid Inverse-Design Framework
- Authors: Reza Marzban, Hamed Abiri, Raphael Pestourie, Ali Adibi,
- Abstract summary: HiLAB is a new paradigm for inverse design of nanophotonic structures.<n>It addresses multi-functional device design by generating diverse freeform configurations at reduced simulation costs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization) is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multi-functional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full simulations decreases by over an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ~25% while mitigating chromatic aberrations-a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.
Related papers
- diffSPH: Differentiable Smoothed Particle Hydrodynamics for Adjoint Optimization and Machine Learning [21.05257407408671]
diffSPH is a differentiable Smoothed Particle Hydrodynamics (SPH) framework developed entirely in PyTorch with GPU acceleration.<n> diffSPH is designed centrally around differentiation to facilitate optimization and machine learning (ML) applications in Computational Fluid Dynamics(CFD)<n>We demonstrate the framework's unique capabilities through several applications, including addressing particle shifting via a novel, target-oriented approach.
arXiv Detail & Related papers (2025-07-29T10:54:27Z) - Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
We address the synthesis of a compliant cross-hinge mechanism capable of large angular strokes.<n>We formulate a multi-objective optimization problem based on kinetostatic performance measures.
arXiv Detail & Related papers (2025-04-23T06:29:10Z) - Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.<n>We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.<n>The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators [5.565261874218803]
This paper demonstrates the power of differentiability for solving MOO problems using a Deep Differentiable Reinforcement Learning algorithm in particle accelerators.
The underlying problem enforces strict constraints on both individual states and actions as well as cumulative (global) constraint for energy requirements of the beam.
arXiv Detail & Related papers (2024-11-07T15:55:05Z) - Bayesian Experimental Design via Contrastive Diffusions [2.2186678387006435]
Experimental Design (BOED) is a powerful tool to reduce the cost of running a sequence of experiments.<n>We introduce a pooled gradient distribution with cost-effective sampling properties and provide a tractable access to the EIG contrast posterior via a new EIG expression.<n>By incorporating generative models into the BOED framework, we expand its scope and its use in scenarios that were impractical.
arXiv Detail & Related papers (2024-10-15T17:53:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Accelerating Bayesian Optimization for Biological Sequence Design with
Denoising Autoencoders [28.550684606186884]
We develop a new approach which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head.
We evaluate LaMBO on a small-molecule based on the ZINC dataset and introduce a new large-molecule task targeting fluorescent proteins.
arXiv Detail & Related papers (2022-03-23T21:58:45Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.