論文の概要: Few-Shot Task Learning through Inverse Generative Modeling
- arxiv url: http://arxiv.org/abs/2411.04987v1
- Date: Thu, 07 Nov 2024 18:55:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:22.726033
- Title: Few-Shot Task Learning through Inverse Generative Modeling
- Title(参考訳): 逆生成モデルによるタスク学習
- Authors: Aviv Netanyahu, Yilun Du, Antonia Bronars, Jyothish Pari, Joshua Tenenbaum, Tianmin Shu, Pulkit Agrawal,
- Abstract要約: Inverse Generative Modeling (FTL-IGM) を用いたFew-Shot Task Learningを提案する。
提案手法を,物体再構成,目標指向ナビゲーション,人間の動作のキャプション,自律運転,実世界のテーブルトップ操作の5つの領域で評価した。
- 参考スコア(独自算出の注目度): 44.75125670259287
- License:
- Abstract: Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.
- Abstract(参考訳): エージェントの意図(目標や動作スタイルによって定義される)を学ぶことは、ほんの数例から非常に難しいことが多い。
本稿では、この問題をタスク概念学習と呼び、逆生成モデリング(FTL-IGM)によるFew-Shotタスク学習(Few-Shot Task Learning)を提案する。
中心となる考え方は、基本的な概念とデモのセットで生成モデルを事前訓練することである。
そして,新しい概念(新しいゴールや新しいアクションなど)のデモを数回行った結果,生成モデルの可逆性により,モデル重みを更新することなくバックプロパゲーションを通じて基礎となる概念を学習する。
提案手法は, 物体再構成, 目標指向ナビゲーション, 人間の動作のキャプションキャプション, 自律運転, 実世界のテーブルトップ操作の5つの領域で評価する。
実験の結果, 事前学習した生成モデルを用いて, 新たな概念を学習し, エージェント・プランや動作を, 1) 見えない環境, (2) 学習概念を組み込んだ構成で生成できることが確認された。
関連論文リスト
- Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
本稿では,事前学習された生成モデルの潜在空間に概念特徴をマッピングすることに依存する新しい手法を提案する。
本手法の有効性を,解釈可能な予測ネットワークの精度,再現性,学習概念の忠実性,一貫性の観点から定量的に検証した。
論文 参考訳(メタデータ) (2024-07-01T14:39:41Z) - AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model [7.674744385997066]
概念ボトルネックモデルは、人間の理解可能な概念の層を統合することにより、ニューラルネットワークの解釈可能性を高める。
AnyCBM"は、既存のトレーニングされたモデルを、計算リソースに最小限の影響を伴って、Concept Bottleneck Modelに変換する。
論文 参考訳(メタデータ) (2024-05-26T10:19:04Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
本稿では,ビデオにおける生成前学習を通じて動的理解に役立つ表現を学習するフレームワークを提案する。
我々のフレームワークは、視覚に基づく強化学習の最終性能とサンプル効率の両方を著しく改善する。
論文 参考訳(メタデータ) (2022-03-25T19:44:09Z) - Procedure Planning in Instructional Videosvia Contextual Modeling and
Model-based Policy Learning [114.1830997893756]
本研究は,実生活ビデオにおける目標指向アクションを計画するモデルを学習することに焦点を当てる。
本研究では,ベイズ推論とモデルに基づく模倣学習を通して,人間の行動のモデル化を行う新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-05T01:06:53Z) - Model-Based Inverse Reinforcement Learning from Visual Demonstrations [20.23223474119314]
本稿では,視覚的人間の実演のみを与えられた場合のコスト関数を学習する,勾配に基づく逆強化学習フレームワークを提案する。
学習したコスト関数は、視覚モデル予測制御によって実証された振る舞いを再現するために使用される。
2つの基本的なオブジェクト操作タスクでハードウェアのフレームワークを評価する。
論文 参考訳(メタデータ) (2020-10-18T17:07:53Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。