Improving Radiology Report Conciseness and Structure via Local Large Language Models
- URL: http://arxiv.org/abs/2411.05042v2
- Date: Tue, 03 Jun 2025 22:53:07 GMT
- Title: Improving Radiology Report Conciseness and Structure via Local Large Language Models
- Authors: Iryna Hartsock, Cyrillo Araujo, Les Folio, Ghulam Rasool,
- Abstract summary: Radiology reports are often lengthy and unstructured, posing challenges for referring physicians.<n>This retrospective study aimed to enhance radiology reports by making them concise and well-structured.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Radiology reports are often lengthy and unstructured, posing challenges for referring physicians to quickly identify critical imaging findings while increasing the risk of missed information. This retrospective study aimed to enhance radiology reports by making them concise and well-structured, with findings organized by relevant organs. To achieve this, we utilized private large language models (LLMs) deployed locally within our institution's firewall, ensuring data security and minimizing computational costs. Using a dataset of 814 radiology reports from seven board-certified body radiologists at Moffitt Cancer Center, we tested five prompting strategies within the LangChain framework. After evaluating several models, the Mixtral LLM demonstrated superior adherence to formatting requirements compared to alternatives like Llama. The optimal strategy involved condensing reports first and then applying structured formatting based on specific instructions, reducing verbosity while improving clarity. Across all radiologists and reports, the Mixtral LLM reduced redundant word counts by more than 53%. These findings highlight the potential of locally deployed, open-source LLMs to streamline radiology reporting. By generating concise, well-structured reports, these models enhance information retrieval and better meet the needs of referring physicians, ultimately improving clinical workflows.
Related papers
- Automated Structured Radiology Report Generation [11.965406008391371]
We introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format.<n>We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata.<n>We also introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports.
arXiv Detail & Related papers (2025-05-30T05:23:01Z) - Leveraging LLMs for Multimodal Retrieval-Augmented Radiology Report Generation via Key Phrase Extraction [0.0]
We propose a retrieval-augmented generation approach that leverages multimodal retrieval and large language models.<n>Our method uses LLMs to extract key phrases from radiology reports, effectively focusing on essential diagnostic information.<n>We evaluate our approach on MIMIC-CXR dataset, achieving state-of-the-art results on CheXbert metrics and competitive RadGraph F1 metric.
arXiv Detail & Related papers (2025-04-10T03:14:01Z) - Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
arXiv Detail & Related papers (2024-10-21T05:08:18Z) - Development and Validation of a Dynamic-Template-Constrained Large Language Model for Generating Fully-Structured Radiology Reports [9.504087246178221]
Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.
We aim to develop an open-source, accurate LLM for creating fully-structured and standardized LCS reports from varying free-text reports across institutions.
arXiv Detail & Related papers (2024-09-26T21:59:11Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.<n>It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.<n>Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - X-ray Made Simple: Lay Radiology Report Generation and Robust Evaluation [21.425178466284017]
Radiology Report Generation (RRG) has advanced considerably with the development of multimodal generative models.<n>RRG with high performance on existing lexical-based metrics might be more of a mirage - a model can get a high BLEU only by learning the template of reports.<n>We propose a semantics-based evaluation method, which is effective in mitigating the inflated numbers of BLEU and provides more robust evaluation.
arXiv Detail & Related papers (2024-06-25T19:52:01Z) - Improving Expert Radiology Report Summarization by Prompting Large Language Models with a Layperson Summary [8.003346409136348]
Radiology report summarization (RRS) is crucial for patient care, requiring concise "Impressions" from detailed "Findings"
This paper introduces a novel prompting strategy to enhance RRS by first generating a layperson summary.
Our results demonstrate improvements in summarization accuracy and accessibility, particularly in out-of-domain tests.
arXiv Detail & Related papers (2024-06-20T17:01:55Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.
Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.
AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Rad-ReStruct: A Novel VQA Benchmark and Method for Structured Radiology
Reporting [45.76458992133422]
We introduce Rad-ReStruct, a new benchmark dataset that provides fine-grained, hierarchically ordered annotations in the form of structured reports for X-Ray images.
We propose hi-VQA, a novel method that considers prior context in the form of previously asked questions and answers for populating a structured radiology report.
Our experiments show that hi-VQA achieves competitive performance to the state-of-the-art on the medical VQA benchmark VQARad while performing best among methods without domain-specific vision-language pretraining.
arXiv Detail & Related papers (2023-07-11T19:47:05Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - Cross-Modal Causal Intervention for Medical Report Generation [107.76649943399168]
Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance.<n> generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases.<n>We propose a two-stage framework named CrossModal Causal Representation Learning (CMCRL)<n> Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
We propose a method to predict clinical findings defined by sentences in structured reporting templates.
The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports.
Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.
arXiv Detail & Related papers (2022-03-29T16:31:39Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z) - An Ensemble Approach for Automatic Structuring of Radiology Reports [6.186392239590685]
We present an ensemble method that consolidates the predictions of three models, capturing various attributes of textual information for automatic labeling of sentences.
Our proposed approach significantly outperforms other approaches by achieving 97.1% accuracy.
arXiv Detail & Related papers (2020-10-05T18:11:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.