論文の概要: QuanCrypt-FL: Quantized Homomorphic Encryption with Pruning for Secure Federated Learning
- arxiv url: http://arxiv.org/abs/2411.05260v1
- Date: Fri, 08 Nov 2024 01:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:58.587012
- Title: QuanCrypt-FL: Quantized Homomorphic Encryption with Pruning for Secure Federated Learning
- Title(参考訳): QuanCrypt-FL:セキュアフェデレーション学習のためのプルーニングを用いた量子同型暗号化
- Authors: Md Jueal Mia, M. Hadi Amini,
- Abstract要約: 我々は,攻撃に対する防御を強化するために,低ビット量子化とプルーニング技術を組み合わせた新しいアルゴリズムQuanCrypt-FLを提案する。
我々は、MNIST、CIFAR-10、CIFAR-100データセットに対するアプローチを検証し、最先端手法と比較して優れた性能を示す。
QuanCrypt-FLは、最大9倍高速暗号化、16倍高速復号化、1.5倍高速推論を実現し、トレーニング時間を最大3倍短縮する。
- 参考スコア(独自算出の注目度): 0.48342038441006796
- License:
- Abstract: Federated Learning has emerged as a leading approach for decentralized machine learning, enabling multiple clients to collaboratively train a shared model without exchanging private data. While FL enhances data privacy, it remains vulnerable to inference attacks, such as gradient inversion and membership inference, during both training and inference phases. Homomorphic Encryption provides a promising solution by encrypting model updates to protect against such attacks, but it introduces substantial communication overhead, slowing down training and increasing computational costs. To address these challenges, we propose QuanCrypt-FL, a novel algorithm that combines low-bit quantization and pruning techniques to enhance protection against attacks while significantly reducing computational costs during training. Further, we propose and implement mean-based clipping to mitigate quantization overflow or errors. By integrating these methods, QuanCrypt-FL creates a communication-efficient FL framework that ensures privacy protection with minimal impact on model accuracy, thereby improving both computational efficiency and attack resilience. We validate our approach on MNIST, CIFAR-10, and CIFAR-100 datasets, demonstrating superior performance compared to state-of-the-art methods. QuanCrypt-FL consistently outperforms existing method and matches Vanilla-FL in terms of accuracy across varying client. Further, QuanCrypt-FL achieves up to 9x faster encryption, 16x faster decryption, and 1.5x faster inference compared to BatchCrypt, with training time reduced by up to 3x.
- Abstract(参考訳): フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習の主要なアプローチとして現れ、プライベートデータを交換することなく、複数のクライアントが共同で共有モデルをトレーニングすることを可能にする。
FLはデータのプライバシを向上させるが、トレーニングと推論フェーズの両方において、勾配反転やメンバシップ推論のような推論攻撃に対して脆弱である。
ホモモルフィック暗号化は、そのような攻撃を防ぐためにモデル更新を暗号化することで有望なソリューションを提供するが、かなりの通信オーバーヘッドを導入し、トレーニングを遅くし、計算コストを増大させる。
これらの課題に対処するため,我々は,低ビット量子化とプルーニング技術を組み合わせた新しいアルゴリズムQuanCrypt-FLを提案する。
さらに、量子化のオーバーフローやエラーを軽減するために平均ベースのクリッピングを提案し、実装する。
これらの手法を統合することで、QuanCrypt-FLは通信効率のよいFLフレームワークを作成し、モデル精度への影響を最小限に抑え、計算効率と攻撃レジリエンスの両方を改善する。
我々は、MNIST、CIFAR-10、CIFAR-100データセットに対するアプローチを検証し、最先端手法と比較して優れた性能を示す。
QuanCrypt-FLは既存の手法を一貫して上回り、様々なクライアントの精度でVanilla-FLと一致する。
さらに、QuanCrypt-FLは、BatchCryptと比較して最大9倍高速な暗号化、16倍高速な復号化、1.5倍高速な推論を実現し、トレーニング時間を最大3倍短縮する。
関連論文リスト
- CryptoTrain: Fast Secure Training on Encrypted Dataset [17.23344104239024]
線形および非線形操作を扱うために,同型暗号化とOblivious Transfer(OT)を併用したハイブリッド暗号プロトコルを開発した。
CCMul-Precomputeと相関した畳み込みをCryptoTrain-Bに統合することにより、迅速かつ効率的なセキュアなトレーニングフレームワークを実現する。
論文 参考訳(メタデータ) (2024-09-25T07:06:14Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption [4.164336621664897]
HETALは、効率的な同型暗号化に基づく転送学習アルゴリズムである。
本稿では,従来の手法よりも1.8~323倍高速な暗号化行列乗算アルゴリズムを提案する。
実験では、合計訓練時間は567-3442秒であり、1時間未満である。
論文 参考訳(メタデータ) (2024-03-21T03:47:26Z) - Federated Learning is Better with Non-Homomorphic Encryption [1.4110007887109783]
Federated Learning(FL)は、生データを収集することなく、分散AIモデルのトレーニングを促進するパラダイムを提供する。
一般的な手法の1つは、ホモモルフィック暗号化(HE)を用いることである。
本稿では,置換型圧縮機と古典暗号を相乗化する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-04T17:37:41Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Dynamic Sparse Training: Computing Less, Communicating Less,
Yet Learning Better [88.28293442298015]
Federated Learning (FL)は、クラウドからリソース制限されたエッジデバイスへの機械学習ワークロードの分散を可能にする。
我々は、FedDST(Federated Dynamic Sparse Training)と呼ばれる新しいFLフレームワークを開発し、実装し、実験的に検証する。
FedDSTは、ターゲットのフルネットワークからスパースサブネットワークを抽出し、訓練する動的プロセスである。
論文 参考訳(メタデータ) (2021-12-18T02:26:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z) - FPGA-Based Hardware Accelerator of Homomorphic Encryption for Efficient
Federated Learning [9.733675923979108]
フェデレートラーニングは、転送された中間データを保護するために、様々なプライバシー保護機構を利用する傾向がある。
正確性とセキュリティをより効率的に維持することは、連合学習の重要な問題である。
我々のフレームワークは、柔軟性とポータビリティのための高レベルな合成により、代表的なPaillier準同型暗号システムを実装している。
論文 参考訳(メタデータ) (2020-07-21T01:59:58Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。