論文の概要: CryptoTrain: Fast Secure Training on Encrypted Dataset
- arxiv url: http://arxiv.org/abs/2409.16675v2
- Date: Thu, 26 Sep 2024 19:20:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 17:20:02.671115
- Title: CryptoTrain: Fast Secure Training on Encrypted Dataset
- Title(参考訳): CryptoTrain: 暗号化データセットによる高速なセキュアトレーニング
- Authors: Jiaqi Xue, Yancheng Zhang, Yanshan Wang, Xueqiang Wang, Hao Zheng, Qian Lou,
- Abstract要約: 線形および非線形操作を扱うために,同型暗号化とOblivious Transfer(OT)を併用したハイブリッド暗号プロトコルを開発した。
CCMul-Precomputeと相関した畳み込みをCryptoTrain-Bに統合することにより、迅速かつ効率的なセキュアなトレーニングフレームワークを実現する。
- 参考スコア(独自算出の注目度): 17.23344104239024
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Secure training, while protecting the confidentiality of both data and model weights, typically incurs significant training overhead. Traditional Fully Homomorphic Encryption (FHE)-based non-inter-active training models are heavily burdened by computationally demanding bootstrapping. To develop an efficient secure training system, we established a foundational framework, CryptoTrain-B, utilizing a hybrid cryptographic protocol that merges FHE with Oblivious Transfer (OT) for handling linear and non-linear operations, respectively. This integration eliminates the need for costly bootstrapping. Although CryptoTrain-B sets a new baseline in performance, reducing its training overhead remains essential. We found that ciphertext-ciphertext multiplication (CCMul) is a critical bottleneck in operations involving encrypted inputs and models. Our solution, the CCMul-Precompute technique, involves precomputing CCMul offline and resorting to the less resource-intensive ciphertext-plaintext multiplication (CPMul) during private training. Furthermore, conventional polynomial convolution in FHE systems tends to encode irrelevant and redundant values into polynomial slots, necessitating additional polynomials and ciphertexts for input representation and leading to extra multiplications. Addressing this, we introduce correlated polynomial convolution, which encodes only related input values into polynomials, thus drastically reducing the number of computations and overheads. By integrating CCMul-Precompute and correlated polynomial convolution into CryptoTrain-B, we facilitate a rapid and efficient secure training framework, CryptoTrain. Extensive experiments demonstrate that CryptoTrain achieves a ~5.3X training time reduction compared to prior methods.
- Abstract(参考訳): セキュアなトレーニングは、データとモデルウェイトの両方の機密性を保護しながら、通常、かなりのトレーニングオーバーヘッドを発生させる。
従来のFHE(Fully Homomorphic Encryption)ベースの非アクティブトレーニングモデルは、ブートストラップの計算要求によって大きな負担を受ける。
そこで我々は,FHE と Oblivious Transfer (OT) を併用して線形および非線形操作を扱うハイブリッド暗号プロトコルを基盤として,効率的なセキュアなトレーニングシステムである CryptoTrain-B を構築した。
この統合により、コストのかかるブートストラップが不要になる。
CryptoTrain-Bはパフォーマンスの新たなベースラインを設定するが、トレーニングオーバーヘッドの削減は依然として不可欠である。
我々は、暗号文-暗号文乗算(CCMul)が、暗号化された入力やモデルを含む操作において重要なボトルネックとなることを発見した。
我々のソリューションであるCCMul-Precomputeは、CCMulをオフラインでプリ計算し、プライベートトレーニング中にリソース集約の少ない暗号文-プレーンテキスト乗算(CPMul)を利用する。
さらに、FHEシステムにおける従来の多項式畳み込みは、無関係かつ冗長な値を多項式スロットにエンコードし、入力表現のために追加の多項式と暗号文を必要とし、余分な乗法をもたらす傾向にある。
これに対応するために,関連する入力値のみを多項式にエンコードする相関多項式畳み込みを導入し,計算量やオーバーヘッドを大幅に削減する。
CCMul-Precomputeと相関多項式の畳み込みをCryptoTrain-Bに統合することにより、迅速かつ効率的なセキュアなトレーニングフレームワークCryptoTrainを実現する。
大規模な実験により、CryptoTrainは以前の方法に比べて約5.3倍のトレーニング時間を短縮できることが示された。
関連論文リスト
- QuanCrypt-FL: Quantized Homomorphic Encryption with Pruning for Secure Federated Learning [0.48342038441006796]
我々は,攻撃に対する防御を強化するために,低ビット量子化とプルーニング技術を組み合わせた新しいアルゴリズムQuanCrypt-FLを提案する。
我々は、MNIST、CIFAR-10、CIFAR-100データセットに対するアプローチを検証し、最先端手法と比較して優れた性能を示す。
QuanCrypt-FLは、最大9倍高速暗号化、16倍高速復号化、1.5倍高速推論を実現し、トレーニング時間を最大3倍短縮する。
論文 参考訳(メタデータ) (2024-11-08T01:46:00Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Efficient Homomorphically Encrypted Convolutional Neural Network Without Rotation [6.03124479597323]
本稿では, HE方式の安全性に影響を与えることなく, 暗号文の回転を除去する新しい構成法とフィルタ係数パッキング方式を提案する。
CIFAR-10/100データセット上のさまざまなプレーン20に対して、私たちの設計は、最高の事前設計と比較して、Conv層とFC層のランニング時間を15.5%削減し、クライアントとサーバ間の通信コストを50%以上削減します。
論文 参考訳(メタデータ) (2024-09-08T19:46:25Z) - HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption [4.164336621664897]
HETALは、効率的な同型暗号化に基づく転送学習アルゴリズムである。
本稿では,従来の手法よりも1.8~323倍高速な暗号化行列乗算アルゴリズムを提案する。
実験では、合計訓練時間は567-3442秒であり、1時間未満である。
論文 参考訳(メタデータ) (2024-03-21T03:47:26Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
分散連合学習(DFL)は、様々なアプリケーションにまたがる実用性によって人気を博している。
集中型バージョンと比較して、DFLの多数のノード間で共有モデルをトレーニングするのはより難しい。
我々は,iADM (iexact alternating direction method) の枠組みに基づく新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-08-31T12:22:40Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
トランスフォーマーモデルのプライバシ保護推論は、クラウドサービスユーザの要求に基づいています。
我々は、事前訓練されたモデルのプライバシ保存推論を可能にするトランスフォーマーの近似アプローチである$textitTHE-X$を紹介した。
論文 参考訳(メタデータ) (2022-06-01T03:49:18Z) - Efficient Batch Homomorphic Encryption for Vertically Federated XGBoost [9.442606239058806]
本稿では,広範に使用されているXGBoostモデルを,垂直連合学習環境に適用する際の効率問題について検討する。
本稿では,暗号関連および伝送のコストをほぼ半分に削減する,新しいバッチ同型暗号法を提案する。
論文 参考訳(メタデータ) (2021-12-08T12:41:01Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z) - TEDL: A Text Encryption Method Based on Deep Learning [10.428079716944463]
本稿では,TEDLと呼ばれる深層学習に基づく新しいテキスト暗号化手法を提案する。
実験および関連する分析の結果、TEDLはセキュリティ、効率、汎用性に優れ、キー再配布頻度の低いことが示されている。
論文 参考訳(メタデータ) (2020-03-09T11:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。