論文の概要: Distributed-Order Fractional Graph Operating Network
- arxiv url: http://arxiv.org/abs/2411.05274v1
- Date: Fri, 08 Nov 2024 02:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:08.994675
- Title: Distributed-Order Fractional Graph Operating Network
- Title(参考訳): 分散次分数グラフオペレーティングネットワーク
- Authors: Kai Zhao, Xuhao Li, Qiyu Kang, Feng Ji, Qinxu Ding, Yanan Zhao, Wenfei Liang, Wee Peng Tay,
- Abstract要約: 本稿では,分散順序分数計算を組み込んだ新しい連続グラフニューラルネットワーク(GNN)フレームワークを提案する。
複数のデリバティブ順序の柔軟で学習可能な重ね合わせを可能にすることで、我々のフレームワークは複雑なグラフの特徴を捉え、動的に更新する。
その結果,従来の連続型GNNモデルと比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 25.63242593133593
- License:
- Abstract: We introduce the Distributed-order fRActional Graph Operating Network (DRAGON), a novel continuous Graph Neural Network (GNN) framework that incorporates distributed-order fractional calculus. Unlike traditional continuous GNNs that utilize integer-order or single fractional-order differential equations, DRAGON uses a learnable probability distribution over a range of real numbers for the derivative orders. By allowing a flexible and learnable superposition of multiple derivative orders, our framework captures complex graph feature updating dynamics beyond the reach of conventional models. We provide a comprehensive interpretation of our framework's capability to capture intricate dynamics through the lens of a non-Markovian graph random walk with node feature updating driven by an anomalous diffusion process over the graph. Furthermore, to highlight the versatility of the DRAGON framework, we conduct empirical evaluations across a range of graph learning tasks. The results consistently demonstrate superior performance when compared to traditional continuous GNN models. The implementation code is available at \url{https://github.com/zknus/NeurIPS-2024-DRAGON}.
- Abstract(参考訳): 本稿では,分散順序分数計算を組み込んだ新しい連続グラフニューラルネットワーク(GNN)フレームワークである分散階数グラフ演算ネットワーク(DRAGON)を紹介する。
整数階数や単分数階微分方程式を利用する従来の連続GNNとは異なり、DRAGONは微分階数に対して実数の範囲にわたる学習可能な確率分布を使用する。
フレキシブルで学習可能な複数のデリバティブオーダーの重ね合わせを可能にすることで、従来のモデルの範囲を超えて動的に更新される複雑なグラフの特徴を捉えることができる。
我々は,非マルコフグラフランダムウォークのレンズを通して複雑なダイナミクスを捕捉するフレームワークの能力を包括的に解釈し,グラフ上の異常拡散プロセスによってノード特徴を更新する。
さらに、DRAGONフレームワークの汎用性を強調するため、様々なグラフ学習タスクに対して実験的な評価を行う。
その結果,従来の連続型GNNモデルと比較して優れた性能を示した。
実装コードは \url{https://github.com/zknus/NeurIPS-2024-DRAGON} で公開されている。
関連論文リスト
- Unleashing the Potential of Fractional Calculus in Graph Neural Networks with FROND [27.90671314829468]
本稿では,新しい連続グラフニューラルネットワーク(GNN)フレームワークであるFRactional-Order graph Neural Dynamical Network (FROND)を紹介する。
整数階微分方程式に依存する伝統的な連続GNNとは異なり、FRONDは分数計算の非局所的性質を利用するためにカプトー分数微分を用いる。
論文 参考訳(メタデータ) (2024-04-26T01:20:45Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - A Fractional Graph Laplacian Approach to Oversmoothing [15.795926248847026]
非直交グラフから有向グラフへのオーバースムーシングの概念を一般化する。
非局所力学を記述した分数グラフ Laplacian Neural ODE を提案する。
グラフのディリクレエネルギーの収束に関して、我々の方法はより柔軟である。
論文 参考訳(メタデータ) (2023-05-22T14:52:33Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Distribution Preserving Graph Representation Learning [11.340722297341788]
グラフニューラルネットワーク(GNN)は、ノードとグラフ全体の分散表現のためのグラフをモデル化するのに有効である。
本稿では,表現型GNNモデルの一般化性を向上させるGNNフレームワークとして,分散保存GNN(DP-GNN)を提案する。
提案するDP-GNNフレームワークを,グラフ分類タスクのための複数のベンチマークデータセット上で評価する。
論文 参考訳(メタデータ) (2022-02-27T19:16:26Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
本稿では,連続拡散過程としてグラフの深層学習にアプローチするグラフニューラル拡散(GRAND)を提案する。
我々のモデルでは、層構造と位相は時間的および空間的作用素の離散化選択に対応する。
我々のモデルの成功の鍵は、データの摂動に対する安定性であり、これは暗黙的および明示的な離散化スキームの両方に対処する。
論文 参考訳(メタデータ) (2021-06-21T09:10:57Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。