論文の概要: RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
- arxiv url: http://arxiv.org/abs/2411.05354v1
- Date: Fri, 08 Nov 2024 06:19:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:08.048160
- Title: RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
- Title(参考訳): RED:低用量PET画像再構成のための残差推定拡散法
- Authors: Xingyu Ai, Bin Huang, Fang Chen, Liu Shi, Binxuan Li, Shaoyu Wang, Qiegen Liu,
- Abstract要約: 残留エスティメーション拡散(RED)という拡散モデルを提案する。
拡散機構の観点からは、REDは拡散過程におけるガウスノイズを置き換えるためにシングラム間の残差を用いる。
実験の結果,REDは低用量シングラムの品質と再建成績を良好に向上させることがわかった。
- 参考スコア(独自算出の注目度): 8.152999560646371
- License:
- Abstract: Recent advances in diffusion models have demonstrated exceptional performance in generative tasks across vari-ous fields. In positron emission tomography (PET), the reduction in tracer dose leads to information loss in sino-grams. Using diffusion models to reconstruct missing in-formation can improve imaging quality. Traditional diffu-sion models effectively use Gaussian noise for image re-constructions. However, in low-dose PET reconstruction, Gaussian noise can worsen the already sparse data by introducing artifacts and inconsistencies. To address this issue, we propose a diffusion model named residual esti-mation diffusion (RED). From the perspective of diffusion mechanism, RED uses the residual between sinograms to replace Gaussian noise in diffusion process, respectively sets the low-dose and full-dose sinograms as the starting point and endpoint of reconstruction. This mechanism helps preserve the original information in the low-dose sinogram, thereby enhancing reconstruction reliability. From the perspective of data consistency, RED introduces a drift correction strategy to reduce accumulated prediction errors during the reverse process. Calibrating the inter-mediate results of reverse iterations helps maintain the data consistency and enhances the stability of reconstruc-tion process. Experimental results show that RED effec-tively improves the quality of low-dose sinograms as well as the reconstruction results. The code is available at: https://github.com/yqx7150/RED.
- Abstract(参考訳): 拡散モデルの最近の進歩は、多種多様体における生成タスクにおいて例外的な性能を示した。
ポジトロン・エミッション・トモグラフィ(PET)では、トレーサー線量減少はサイノグラムの情報損失につながる。
拡散モデルを用いて、欠落したインフォームを再構築することで、画像の品質が向上する。
従来の回折モデルは画像再構成にガウスノイズを効果的に利用する。
しかし、低線量PET再構成では、ガウスノイズは、アーティファクトや不整合を導入することで、既に不足しているデータを悪化させる可能性がある。
この問題に対処するために、残留エスティメーション拡散(RED)と呼ばれる拡散モデルを提案する。
拡散機構の観点からは、REDは拡散過程におけるガウスノイズの置き換えにシングラム間の残差を用いており、それぞれ低線量およびフル線量のサイノグラムを再構築の出発点と終点として設定する。
この機構は、低線量シングラムの原情報の保存に役立ち、復元信頼性を高める。
データ一貫性の観点から、REDは、逆プロセス中に蓄積した予測エラーを減らすためのドリフト補正戦略を導入する。
逆繰り返しの中間結果の校正は、データの一貫性を維持し、再構成プロセスの安定性を高めるのに役立つ。
実験結果から,REDエフェックは低用量シングラムの品質と再建成績を良好に向上することが示された。
コードは、https://github.com/yqx7150/REDで入手できる。
関連論文リスト
- Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction [0.09362267584678274]
低線量ポジトロン放射トモグラフィ(PET)画像再構成法は、画像モダリティとしてPETを大幅に改善する可能性がある。
ディープラーニングは、画像再構成問題に事前情報を組み込んで、妥協された信号から定量的に正確な画像を生成する、有望な手段を提供する。
本稿では,カーネル表現を頑健に表現した深層潜伏空間の特徴を明示的にモデル化し,これまで見られなかった線量削減係数に対して頑健な性能を提供する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T03:57:31Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
実世界の画像超解像(RWSR)は、低品質(LQ)画像が複雑で未同定の劣化を起こすため、長年にわたる問題である。
本稿では,RWSRのための反復的トークン評価・リファインメントフレームワークを提案する。
ITERはGAN(Generative Adversarial Networks)よりも訓練が容易であり,連続拡散モデルよりも効率的であることを示す。
論文 参考訳(メタデータ) (2023-12-09T17:07:32Z) - Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise [34.65659277870287]
微分拡散モデルの研究は、画像復元の分野への応用を拡大した。
本稿では,残余項を拡散前進過程に組み込むフレームワークであるResfusionを提案する。
Resfusionは, ISTDデータセット, LOLデータセット, Raindropデータセットに対して, わずか5つのサンプリングステップで競合性能を示すことを示す。
論文 参考訳(メタデータ) (2023-11-25T02:09:38Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration [39.071637725773314]
画像復元のための粗大な拡散変換器(C2F-DFT)を提案する。
C2F-DFTは拡散自己注意(DFSA)と拡散フィードフォワードネットワーク(DFN)を含んでいる
粗い訓練段階において,我々のC2F-DFTはノイズを推定し,サンプリングアルゴリズムにより最終クリーン画像を生成する。
論文 参考訳(メタデータ) (2023-08-17T01:59:59Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepREDはDIPと正規化を組み合わせた典型的な表現である(RED)
本稿では,ベイズ的な視点からDeepREDを活用して,教師付き情報や補助情報のない単一劣化したシングラムからPET画像の再構成を行う。
論文 参考訳(メタデータ) (2021-10-29T06:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。