Telecom wavelength quantum dots interfaced with silicon-nitride circuits via photonic wire bonding
- URL: http://arxiv.org/abs/2411.05647v1
- Date: Fri, 08 Nov 2024 15:39:59 GMT
- Title: Telecom wavelength quantum dots interfaced with silicon-nitride circuits via photonic wire bonding
- Authors: Ulrich Pfister, Daniel Wendland, Florian Hornung, Lena Engel, Hendrik Hüging, Elias Herzog, Ponraj Vijayan, Raphael Joos, Erik Jung, Michael Jetter, Simone L. Portalupi, Wolfram H. P. Pernice, Peter Michler,
- Abstract summary: In this work, 3D laser written photonic wire bonds are employed to interface triggered sources of quantum light.
Single photons at telecom wavelengths are generated by the In(Ga)As quantum dots which are then funneled into a silicon-nitride chip.
- Score: 0.06521330875978466
- License:
- Abstract: Photonic integrated circuits find ubiquitous use in various technologies, from communication, to computing and sensing, and therefore play a crucial role in the quantum technology counterparts. Several systems are currently under investigation, each showing distinct advantages and drawbacks. For this reason, efforts are made to effectively combine different platforms in order to benefit from their respective strengths. In this work, 3D laser written photonic wire bonds are employed to interface triggered sources of quantum light, based on semiconductor quantum dots embedded into etched microlenses, with low-loss silicon-nitride photonics. Single photons at telecom wavelengths are generated by the In(Ga)As quantum dots which are then funneled into a silicon-nitride chip containing single-mode waveguides and beamsplitters. The second-order correlation function of g(2)(0) = 0.11+/-0.02, measured via the on-chip beamsplitter, clearly demonstrates the transfer of single photons into the silicon-nitride platform. The photonic wire bonds funnel on average 28.6+/-8.8% of the bare microlens emission (NA = 0.6) into the silicon-nitride-based photonic integrated circuit even at cryogenic temperatures. This opens the route for the effective future up-scaling of circuitry complexity based on the use of multiple different platforms.
Related papers
- On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Ultra-broadband quadrature squeezing with thin-film lithium niobate
nanophotonics [0.0]
In this letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics.
We measure 0.5-0.09dB quadrature squeezing(3 dB inferred on-chip)
This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-07-05T19:59:02Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.