A nonstabilizerness monotone from stabilizerness asymmetry
- URL: http://arxiv.org/abs/2411.05766v1
- Date: Fri, 08 Nov 2024 18:26:40 GMT
- Title: A nonstabilizerness monotone from stabilizerness asymmetry
- Authors: Poetri Sonya Tarabunga, Martina Frau, Tobias Haug, Emanuele Tirrito, Lorenzo Piroli,
- Abstract summary: We introduce a nonstabilizerness monotone which we name basis-minimised stabilizerness asymmetry (BMSA)
For pure states, we show that the BMSA is a strong monotone for magic-state resource theory, while it can be extended to mixed states via the convex roof construction.
We present numerical methods to compute the BMSA, highlighting its advantages and drawbacks compared to other nonstabilizerness measures in the context of pure many-body quantum states.
- Score: 0.0
- License:
- Abstract: We introduce a nonstabilizerness monotone which we name basis-minimised stabilizerness asymmetry (BMSA). It is based on the notion of $G$-asymmetry, a measure of how much a certain state deviates from being symmetric with respect to a symmetry group $G$. For pure states, we show that the BMSA is a strong monotone for magic-state resource theory, while it can be extended to mixed states via the convex roof construction. We discuss its relation with other magic monotones, first showing that the BMSA coincides with the recently introduced basis-minimized measurement entropy, thereby establishing the strong monotonicity of the latter. Next, we provide inequalities between the BMSA and other nonstabilizerness measures known in the literature. Finally, we present numerical methods to compute the BMSA, highlighting its advantages and drawbacks compared to other nonstabilizerness measures in the context of pure many-body quantum states. We also discuss the importance of additivity and strong monotonicity for measures of nonstabilizerness in many-body physics, motivating the search for additional computable nonstabilizerness monotones.
Related papers
- Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking [14.693424479293737]
We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations.
We find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order.
We construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
arXiv Detail & Related papers (2024-10-16T18:00:00Z) - Stabilizer entropies are monotones for magic-state resource theory [0.0]
We establish the monotonicity of stabilizer entropies for $alpha geq 2$ within the context of magic-state resource theory restricted to pure states.
We extend stabilizer entropies to mixed states as monotones via convex roof constructions.
arXiv Detail & Related papers (2024-04-17T18:00:02Z) - Asymmetry activation and its relation to coherence under permutation operation [53.64687146666141]
A Dicke state and its decohered state are invariant for permutation.
When another qubits state to each of them is attached, the whole state is not invariant for permutation, and has a certain asymmetry for permutation.
arXiv Detail & Related papers (2023-11-17T03:33:40Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Stabilizer entropies and nonstabilizerness monotones [0.0]
We study different aspects of the stabilizer entropies (SEs)
We compare them against known nonstabilizerness monotones such as the min-relative entropy and the robustness of magic.
In addition to previously developed exact methods to compute the R'enyi SEs, we put forward a scheme based on perfect MPS sampling.
arXiv Detail & Related papers (2023-03-17T17:42:23Z) - Stability and Generalization for Markov Chain Stochastic Gradient
Methods [49.981789906200035]
We provide a comprehensive generalization analysis of MC-SGMs for both minimization and minimax problems.
We establish the optimal excess population risk bounds for both smooth and non-smooth cases.
We develop the first nearly optimal convergence rates for convex-concave problems both in expectation and with high probability.
arXiv Detail & Related papers (2022-09-16T15:42:51Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Stabilizer R\'enyi entropy [0.0]
We introduce a novel measure for the quantum property of nonstabilizerness - commonly known as "magic"
We show that this is a good measure of nonstabilizerness from the point of view of resource theory and show bounds with other known measures.
We show that the nonstabilizerness is intimately connected to out-of-time-order correlation functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
arXiv Detail & Related papers (2021-06-23T18:00:02Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Toward Better Generalization Bounds with Locally Elastic Stability [41.7030651617752]
We argue that locally elastic stability implies tighter generalization bounds than those derived based on uniform stability.
We revisit the examples of bounded support vector machines, regularized least square regressions, and gradient descent.
arXiv Detail & Related papers (2020-10-27T02:04:53Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.