論文の概要: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- arxiv url: http://arxiv.org/abs/2411.05771v1
- Date: Fri, 08 Nov 2024 18:33:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:00.956666
- Title: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- Title(参考訳): 逆問題に対するSketched Equivariant Imaging RegularizationとDeep Internal Learning
- Authors: Guixian Xu, Jinglai Li, Junqi Tang,
- Abstract要約: 等変イメージング(EI)正則化は、ディープイメージングネットワークの教師なしトレーニングにおけるデファクト技術となっている。
本稿では,ランダムなスケッチ手法を応用したスケッチ付きEI正規化手法を提案する。
次に、スケッチしたEI正規化を拡張して、高速化された深層学習フレームワークを開発する。
- 参考スコア(独自算出の注目度): 4.287621751502392
- License:
- Abstract: Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We then extend our sketched EI regularization to develop an accelerated deep internal learning framework -- Sketched Equivariant Deep Image Prior (Sk.EI-DIP), which can be efficiently applied for single-image and task-adapted reconstruction. Our numerical study on X-ray CT image reconstruction tasks demonstrate that our approach can achieve order-of-magnitude computational acceleration over standard EI-based counterpart in single-input setting, and network adaptation at test time.
- Abstract(参考訳): 等変イメージング(EI)正則化は、地上データを必要としないディープイメージングネットワークの教師なしトレーニングのデファクト技術となっている。
EIをベースとした教師なしトレーニングのパラダイムが、高次元アプリケーションにおいて非効率な計算冗長性を持つのを観察し、ランダム化されたスケッチ技術を利用したスケッチ付きEI正規化を提案する。
次に、スケッチしたEI正規化を拡張して、高速な深層学習フレームワーク -- Sketched Equivariant Deep Image Prior (Sk.EI-DIP) を開発する。
X線CT画像再構成タスクの数値解析により, 単入出力環境での標準EI法とテスト時のネットワーク適応により, 高精度の計算高速化が達成できることが実証された。
関連論文リスト
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-12T03:29:14Z) - Test-time Adaptation with Slot-Centric Models [63.981055778098444]
Slot-TTAは、半教師付きシーン分解モデルであり、シーンごとのテスト時間は、再構成やクロスビュー合成の目的に対する勾配降下を通じて適用される。
我々は、最先端の監視フィードフォワード検出器と代替テスト時間適応法に対して、配電性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-03-21T17:59:50Z) - Equivariance Regularization for Image Reconstruction [5.025654873456756]
不完全な測定条件下での画像逆問題に対する構造適応正則化手法を提案する。
この正規化スキームは、測定の物理学における同変構造を利用して、逆問題の不当な位置を緩和する。
提案手法は,古典的な一階最適化アルゴリズムとともに,プラグ・アンド・プレイ方式で適用することができる。
論文 参考訳(メタデータ) (2022-02-10T14:38:08Z) - Deep Image Prior using Stein's Unbiased Risk Estimator: SURE-DIP [31.408877556706376]
超高解像度イメージングを含む多くのイメージングアプリケーションでは、トレーニングデータが不足している。
シングルショット画像回復のためのディープ画像先行アルゴリズム(DIP)が導入され、トレーニングデータの必要性を完全に排除した。
オーバーフィッティングを最小限に抑えるため,一般化されたStein's Unbiased Risk Estimation (GSURE)損失指標を導入する。
論文 参考訳(メタデータ) (2021-11-21T20:11:56Z) - Towards Unsupervised Sketch-based Image Retrieval [126.77787336692802]
本稿では,教師なし表現学習とスケッチ写真領域アライメントを同時に行う新しいフレームワークを提案する。
このフレームワークは,新しい教師なし設定では優れた性能を達成し,ゼロショット設定では最先端以上の性能を発揮する。
論文 参考訳(メタデータ) (2021-05-18T02:38:22Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
ディープ画像先行(DIP)は、潜在表現エンコーディングからプレイメージを得るために用いられる。
本稿では,予測器と共同で学習した補助損失推定器に基づく新たな正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-10-22T20:40:44Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
画像復元手法として, (i)Deep Image Prior (DIP) と (ii) バックプロジェクション (BP) の2つの手法を提案する。
提案手法はBP-DIP(BP-DIP)と呼ばれ,高いPSNR値とより優れた推論実行時間を持つ通常のDIPよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-11T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。